跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李懷正
研究生(外文):Huai-Cheng Lee
論文名稱:嗜熱短桿菌Lon蛋白酶結合之DNA序列的純化與鑑定
論文名稱(外文):In vitro Identification and Characterization of DNA Sequences Bound by Brevibacillus thermoruber WR-249 Lon Protease
指導教授:吳世雄吳世雄引用關係
指導教授(外文):Shih-Shiung Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:96
中文關鍵詞:蛋白結合之DNA序列DNA結合蛋白Lon蛋白酶
外文關鍵詞:DNA sequences bound by proteinDNA-binding proteinLon protease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具有DNA結合活性之蛋白質,通常在生物體細胞內扮演著重要角色。這類蛋白質通常直接或間接地涉及各式各樣基因表現的調控藉以維持細胞在生理上的恆定。其中具有DNA結合能力之蛋白酶即是利用降解某些轉譯因子(transcription factor)來達到正向或反向的基因調控。實驗室先前研究中,已從台灣烏來溫泉菌-嗜熱短桿菌(Brevibacillus thermoruber WR-249)中選殖出其中一種寡聚體蛋白酶-Lon蛋白酶的基因(Bt-lon),利用遺傳工程得到大量蛋白質產物,並已完成多項酵素活性以及DNA結合活性的鑑定。本論文自其DNA結合之活性著手,探討其結合DNA序列之特異性。

Bt-lon可轉譯出分子量約為88 kDa的Lon蛋白酶(Bt-Lon)。Bt-Lon大致可分成三個功能區(domain):N端功能區、中間ATP水解酶功能區以及C端蛋白酶功能區,其中ATP水解酶功能區還包含了受質偵測識別功\\\\\\\\\\\\\\\能區(sensor- and substrate- discrimination domain, SSD domain)。Bt-Lon 是一個具有多功能的蛋白酶,包括蛋白質的水解、ATP的水解、chaperone-like功能以及與DNA結合之能力。而Bt-Lon對受質的專一性、以及結合之DNA序列皆與大腸桿菌Lon不盡相同。值得一提的是,以往的研究中發現,大腸桿菌Lon傾向結合具有較高TG組成(TG-rich)之DNA序列,本論文實驗結果證實,Bt-Lon所結合之DNA序列之TG組成又較大腸桿菌Lon為更高。

本實驗室之前研究成果顯示,Bt-Lon的SSD功能區與DNA結合有關,為了進一步了解四級結構與DNA結合能力之間的關係,我們設計了一個Bt-Lon的刪去突變株蛋白質(truncated mutants),然後比較這個突變株及Bt-Lon與DNA結合之能力。發現可形成四級結構之Bt-Lon較單體(monomer)之突變株有較強之DNA結合能力,這說明了在細胞內,DNA對於Lon之四級結構的形成,可能扮演著很重要的角色。DNA在被蛋白質結合後,經由DNA水解酵素(DNase I)切除未被蛋白質結合之部分,對純化出來之結合片段同時利用質譜分析儀(mass spectrometry)與選殖組件(cloning kit)進行定序(sequencing)。結果顯示,Bt-Lon與其突變株結合DNA之序列,與大腸桿菌及人類Lon所結合之序列具有相當高的一致性。近一步利用合成之寡核甘酸(oligonucleotide)與聚合酵素連鎖反應(PCR)產生之長片段DNA來確定Bt-Lon結合之DNA序列。結果顯示Bt-Lon對合成之寡核甘酸之結合能力遠低於大腸桿菌Lon,對於被結合之DNA序列也不如大腸桿菌Lon來得專一。然而,Bt-Lon對具有包含結合序列但長度大於200bp的片段,結合能力相較於其他相同長度之片段為高。綜合以上結果,Bt-Lon在選擇結合之DNA時,首先必須具有高TG含量(TG-rich),而當DNA具有超螺旋(supercoiled)結構時則可以提升結合的強度。
Proteins with DNA-binding activity mostly play an important role in the gene expression of a cell. This kind of proteins appears to exert its regulatory function by degrading some transcription factors after it binds to DNA. To investigate what kinds of elements bound by the DNA-binding proteins, identification of the binding site of the DNA must be achieved.

A thermostable Lon protease from Brevibacillus thermoruber WR-249 (Bt-Lon) has been cloned and characterized with an N-terminal domain, a central ATPase domain including a SSD (sensor- and substrate- discrimination) domain, and a C-terminal protease domain. Bt-Lon is a multi-functional enzyme and its functions include the degradation of proteins, ATPase, chaperone-like activities, and DNA binding.

Gel mobility shift assays revealed that Bt-Lon binds to DNA cooperatively. In line with the previous result, we demonstrated that SSD domain is involved in the DNA-binding activity by recruiting a truncated mutant, Bt-Lon-C289. It was also found that Bt-Lon, as well as the E.coli and human Lon, exhibits a high affinity to the TG-rich DNA. To further investigate whether Bt-Lon binds DNA specifically, DNA fragments bound by Bt-Lon were purified and then subjected to MS analysis and sequence determination by cloning/sequencing on the vector (pCR4Blunt-TOPO).

Experimental data revealed that the five fragments bound by Bt-Lon from plasmid pET28a were homologous in sequence with the elements bound by E. coli and human Lon. Furthermore, we selected and cloned the five fragments, encompassing ms1, ms2, lb1, lb2 and lb3 by PCR amplification. Based on the high affinity of these five fragments to Bt-Lon, it is suggested that Lon binds to DNA dependent on the site-specific TG-rich DNA sequences, and the secondary or tertiary structure of the plasmid DNA can enhance the DNA-binding affinity of Bt-Lon.
ABSTRACT………………………………………………………………iii
中文摘要…………………………………………………………………v
LIST OF ABBREVIATIONS……………………………………………vii
INTRODUCTION……………………………………………………………1
MATERIALS AND METHODS
Bacterial strains and plasmids……………………………………6
Expression and purification of Bt-Lon and its truncated mutants…………6
SDS-polyacrylamide gel electrophoresis.……………………………7
Miniprep of plasmid DNA…………………………………………………8
DNA manipulation and sequence analysis…………………………9
Gel mobility shift assays (GMSA)…………………………………9
Calculation of DNA binding cooperativity………………………9
Protein-bound DNA digestion by DNase I……………………………10
Purification of protein-bound DNA fragment…………………10
Mass spectrometry analysis………………………………………11
Insertion of DNA fragment into the cloning vector…………12
Sequence analysis……………………………………………………12
PCR solution contents and thermocycler program……………13
Double-stranded DNA annealing……………………………………14
Homology modeling of Bt-Lon-SSD…………………………………14
RESULTS
PART I
Characterization of DNA-binding activity of Bt-Lon………16
Determination of the Kd for DNA of Bt-Lon and its truncated muntant………16
DNA binds Bt-Lon cooperatively………………………………… 17
Characterization of composition of DNA for Lon binding………18
PART II
Identification of Bt-Lon-binding DNA sequence………………20
Protection of DNA against the DNase I digestion……………20
DNA sequencing by mass spectrometry……………………………20
Identification DNA sequence by direct DNA sequencing…………21
PART III
Specificity of DNA-binding of Bt-Lon……… …………………23
Binding of DNA fragments created by PCR method…………………23
Sequence comparison of Lon-bound DNA elements………………24
DISCUSSION
DNA-binging activity involved in oligomerization of Bt-Lon…………26
Bt-Lon binds to higher TG-rich DNA elements than E. coli…………26
DNA-binding affinity of Lon were enhanced by the supercoiled DNA……………27
FIGURES…………………………………………………………………29
TABLES…………………………………………………………………84
REFERENCES……………………………………………………………87
APPENDIX………………………………………………………………91
1.Gottesman, S. (1996) Proteases and their targets in Escherichia coli. Annu. Rev. Genet. 30, 465-506.
2.Goldberg, A. L., Moerschell, R. P., Chung, C. H. & Maurizi, M. R. (1994) ATP-dependent protease La (lon) from Escherichia coli. Methods Enzymol. 244, 350-375.
3.Goldberg, A. L. (1992) The mechanism and functions of ATP- dependent protease in bacterial and animal cells. Eur. J. Biochem. 203, 9-23.
4.Lee, A. Y.-L., Tsay, S.-S., Chen, M.-Y. & Wu, S.-H. (2004) Identification of gene encoding Lon protease from Brevibacillus thermoruber WR-249 and biochemical characterization fo its thermostable recombinant enzyme. Eur. J. Biochem. 271, 834-844.
5.Lee, A. Y.-L., Hsu, C.-H. & Wu, S.-H. (2004) Functional Domains of Brevibacillus thermoruber Lon Protease for Oligomerization and DNA Binding: Role of N-terminal and sensor and substrate discrimination domains. J. Biol. Chem. 279, 34903-34912.
6.Zehnbauer, B. A., Foley, E. C., Henderson, G. W. & Markovitz, A. (1981) Identification and purification of the Lon+ (capR+) gene product, a DNA-binding protein. Proc. Natl. Acad. Sci. U. S. A. 78, 2043-2047.
7.Fu, G. K. & Markovitz, D. M. (1998) The human Lon protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry 37, 1905-1909.
8.Fu, G. K., Smith, M. J. & Markovitz, D. M. (1997) Bacterial protease Lon is a site-specific DNA-binding protein. J. Biol. Chem. 272, 534-538.
9.He, G. P., Muise, A., Li, A. W. & Ro, H. S. (1995) A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature 378, 92-96.
10.Zheng, W. & Johnston, S. A. (1998) The nucleic acid binding activity of bleomycin hydrolase is involved in bleomycin detoxification. Mol. Cell Biol. 18, 3580-3585.
11.Gonzalez, F., Delahodde, A., Kodadek, T. & Johnston, S. A. (2002) Recruitment of a 19S Proteasome Subcomplex to an Activated Promoter. Science 296, 548-550.
12.Gillette, T. G., Gonzalez, F., Delahodde, A., Johnston, S. A. & Kodadek, T. (2004) Physical and functional association of RNA polymerase II and the proteasome. Proc. Natl. Acad. Sci. U. S. A. 101, 5904-5909.
13.Gill, R. E., Karlok, M. & Benton, D. (1993) Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J. Bacteriol. 175, 4538-4544.
14.Schmidt, R., Decatur, A. L., Rather, P. N., Moran, C. P., Jr. & Losick, R. (1994) Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J. Bacteriol. 176, 6528-6537.
15.Takaya, A., Tomoyasu, T., Tokumitsu, A., Morioka, M. & Yamamoto, T. (2002) The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J. Bacteriol. 184, 224-232.
16.Mizusawa, S. & Gottesman, S. (1983) Protein degradation in Escherichia coli: the lon gene controls the stability if sulA protein. Proc. Natl. Acad. Sci. U. S. A. 80, 358-362.
17.Suzuki, C. K., Suda, K., Wang, N. & Schatz, G. (1994) Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264, 273-276.
18.van Dyck, L., Pearce, D. A. & Sherman, F. (1994) PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 269, 238-242.
19.van Dyck, L., Neupert, W. & Langer, T. (1998) The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev. 12, 1515-1524.
20.Liu, T., Lu, B., Lee, I., Ondrovicova, G., Kutejova, E. & Suzuki, C. K. (2004) DNA and RNA binding by the mitochondrial Lon protease is regulated by nucleotide and protein substrates. J. Biol. Chem. 279, 13902-13910.
21.Chung, C. H. & Goldberg, A. L. (1982) DNA stimulates ATP-dependent proteolysis and protein-dependent ATPase activity of protease La from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 79, 795-799.
22.Charette, M. F., Henderson, G. W., Doane, L. L. & Markovitz, A. (1984) DNA-stimulated ATPase activity on the lon (CapR) protein. J. Bacteriol. 158, 195-201.
23.Sonezaki, S., Okita, K., Oba, T., Ishii, Y., Kondo, A. & Kato, Y. (1995) Protein substrates and heat shock reduce the DNA-binding ability of Escherichia coli. Lon protease. Appl. Microbiol. Biotechnol. 44, 484-488.
24.Kalodimos, C. G., Biris, N., Bonvin, A. M., Levandoski, M. M., Guennuegues, M., Boelens, R. & Kaptein, R. (2004) Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 305, 386-389.
25.Ucci, J. W. & Cole, J. L. (2004) Global analysis of non-specific protein-nucleic interactions by sedimentation equilibrium. Biophys. Chem. 108, 127-140.
26.Schildbach, J. F., Karzai, A. W., Raumann, B. E. & Sauer, R. T. (1999) Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. Proc. Natl. Acad. Sci. U. S. A. 96, 811-817.
27.Norberg, J. (2003) Association of protein-DNA recognition complexes: electrostatic and nonelectrostatic effects. Arch. Biochem. Biophys. 410, 48-68.
28.Nomura, K., Kato, J., Takiguchi, N., Ohtake, H. & Kuroda, A. (2004) Effects of inorganic polyphosphate on the proteolytic and DNA-binding activities of Lon in Escherichia coli. J. Biol. Chem. 279, 34406-34410.
29.Lu, B., Liu, T., Crosby, J. A., Thomas-Wohlever, J., Lee, I. & Suzuki, C. K. (2003) The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 306, 45-55.
30.Lupas, A. (1996) Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375-382.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top