跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖聰榮
研究生(外文):Tsung-Jung Liao
論文名稱:印尼金黃樹蝮蛇毒絲胺酸蛋白酶的純化、基因選殖與基質特擇性
指導教授:蔡蔭和
指導教授(外文):Inn-Ho Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:54
中文關鍵詞:樹蝮蛇毒絲胺酸蛋白酶
外文關鍵詞:serine proteasesTrimeresurus puniceusTrimeresurus borneenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
藉由三段的純化程序,我們從印尼金黃樹蝮 (Trimeresurus puniceus) 蛇毒中純化出4個蛇毒絲胺酸蛋白酶Tpu1—4。以三種呈色基質 (chromogenic substrate)測試顯示,Benzoyl-Pro-Phe-Arg-p-NA是Tpu1較好的基質,而Tosyl-Gly-Pro-Arg- p-NA對於Tpu2、Tpu3是較好的基質,但Tpu4對這三種基質皆無明顯反應。並且也發現Tpu1—4皆會切割高分子激肽原(high molecular weight kininogen, HMWK)、血管收縮素Ⅰ (angiotensinⅠ) 與血纖維原 (fibrinogen)。利用SDS-PAGE觀測Tpu1—4分子量,經PNGase F (一種N-glycanase)處理作用後,Tpu1—4的分子量皆約為25~27kDa。而從蛇毒中純化之Tpu1和Tpu4比Tpu2和Tpu3具有較大的分子量,顯示Tpu1與Tpu4具有較高的醣化程度。另外,我們也用定序儀解出Tpu1—4各自的N端胺基酸序列,發現這些序列確實明顯不同。
我們使用適當的引子 (primers) 放大並選殖了印尼金黃樹蝮的蛇毒絲胺酸蛋白酶的互補核酸 (cDNA),在分析了40個clones之序列後,我們得到三個較可信的互補核酸序列。由此核酸序列所推定出的胺基酸序列,分別由234、233和236個胺基酸所組成。依照這三個胺基酸序列的N端與純化的Tpu1—4的對應情形,分別確定即可能為Tpu1、Tpu2和Tpu4,其預估分子量分別為25624、25350和 26109 Da (假設皆有六對雙硫鍵的情況之下),其活性中樞也皆有His57,Asp102,Ser195 (chymotrypsin numbering) 等對應成分。不同的是,Tpu1具有5個potential N-glycosylation sites,Tpu4具有4個,但Tpu2只有2個。
同樣我們也選殖了外觀相近之蛇種婆羅州黃樹蝮 (Trimeresurus borneenesis)的三個蛇毒絲胺酸蛋白酶的互補核酸,從核酸定序推定三個的胺基酸序列,分別將其命名為Tbo2、Tbo3和Tbo4,分別由233、234和236個胺基酸所組成,預估分子量分別為25295、25522和26149 Da (假設各絲胺酸蛋白酶分子皆有六對雙硫鍵) , 它們分別具有2、2、4個potential N-glycosylation sites。有趣的是,我們發現Tpu3的N端胺基酸序列與Tbo3相同,而Tpu2與Tbo2只有三個胺基酸不同且都具有13個半胱胺酸 (cysteines),這也許可以更確認這兩種樹蝮是相近的蛇類。
過去本實驗室也報告了許多由Trimeresurus stejnegeri所選殖出的絲胺酸蛋白酶的互補核酸序列及推定的胺基酸序列,經過序列比對後發現多數屬於KN (kininogenase)。利用BLASTP做序列搜尋及分析也發現本實驗所報告的序列與其他實驗室所報告來自台灣與中國Trimeresurus stejnegeri的蛇毒KN非常相似,用種屬樹 (phylogenetic tree) 的分析結果再次證實這三種同屬的樹蝮絲胺酸蛋白酶序列十分相近,這三種樹蝮主要表現有多種KN。
Four serine proteases (designated Tpu1—4) were purified from the venom of Trimeresurus puniceus (golden tree viper) from Indonesia. Upon the amidolytic assays using three chromogenic substrates, Tpu1 preferred to hydrolyze Benzoyl-Pro-Phe-Arg- p-NA, a chromogenic substrate for kallilrein, Tpu2 and Tpu3 preferred to hydrolyze Tosyl-Gly-Pro-Arg-p-NA, a chromogenic substrate for thrombin, but Tpu4 did not hydrolyzed any of these substrates. These purified proteases were able to cleave high molecular weight kininogen (HMWK), fibrinogen, and angiotensinⅠ, but with different efficacies. The estimated molecular weights of Tpu1—4 under reducing condition (with 5% β-mercaptoethanol) were 54 kDa, 30 kDa, 35 kDa, 51 kDa, respectively. After removal of N-glycans by PNGaseF the reduced Tpu1—4 migrated as single bands with an apparent molecular weight of 25~27 kDa in SDS-PAGE. Tpu1 and Tpu4 apparently have higher carbohydrate content than Tpu2 and Tpu3. The N-terminal sequences of these purified proteases are different from each other.
PCR of the venom gland cDNA mixtures using designed specific primers resulted in the amplification of cDNAs encoding these serine proteases. After checking the sequences of about 40 clones, three distinct cDNA sequences were found to match the proteases purified. The predicted molecular weight without post-translation modification (but assuming the formation of six pairs of disulfide bonds) for Tpu1, Tpu2 and Tpu4 are 25624 Da, 25350 Da, and 26109 Da, respectively. The active site residues of serine proteases family, i.e., His57, Asp102 and Ser195 (the chymotrypsin numbering) and location of six pairs of disulfide bonds of the viperid venom proteases are conserved. Tpu1, Tpu2 and Tpu4 contain five, two, and four potentional N-glycosylation sites, respectively.
In addition, three distinct cDNA sequences encoding serine proteases were cloned from the venom gland of T. borneenesis, a species closely related to T. puniceus. The deduced proteases were named Tbo2, Tbo3 and Tbo4, respectively. Interestingly, the N-terminal sequence of Tpu3 is found to be identical to that of Tbo3. Tbo2 and Tpu2 differ by only three residues, confirming a very close relationship between T. puniceus and T. borneenesis. Results of BLASTP search and phylogenetic analyses also revealed that these serine protease sequences of T. puniceus and T. borneenesis are very similar to those of Chinese green tree viper Trimeresurus stejnegeri.
目錄

中文摘要.......................1
英文摘要.......................3
縮寫字表.......................5
材料與藥品......................6
儀器設備.......................8
緒論.........................9
實驗方法......................12
實驗結果......................17
討論........................22
圖表及說明.....................26
參考文獻......................44
附錄........................49
1.Toshiaki Nikai, Yumiko Komori. Kinin-releasing and kinin-degrading enzymes. Enzymes from snake venom. 1998; 287-316.
2.Braud S, Bon C, Wisner A. Snake venom proteins acting on hemostasis. Biochimie. 2000; 82(9-10): 851-9.
3.Ouyang C, Teng CM, Huang TF. Characterization of snake venom components acting on blood coagulation and platelet function. Toxicon. 1992; 30(9): 945-66.
4.Markland FS Jr. Snake venom fibrinogenolytic and fibrinolytic enzymes. Thromb Haemost. 1998; 79(3): 668-74.
5.Pirkle H. thrombin-like enzymes from snake venoms: an updated inventory. Thromb Haemost. 1998; 79(3): 675-83.
6.Samel M, Subbi J, Siigur J, Siigur E. Biochemical characterization of fibrinogenolytic serine proteinases from Vipera lebetina snake venom. Toxicon. 2002; 40(1): 51-4.
7.Hutton RA, Warrell DA. Action of snake venom components on the haemostatic system. Blood Rev. 1993; 7(3): 176-89.
8.Rocha e Silva M, Beraldo WT, Rosenfeld G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and trypsin. Am J Physiol. 1949; 156: 261-273.
9.Zhang Y, Wisner A, Xiong Y, Bon C. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem. 1995; 270(17): 10246-55.
10.Kisiel W, Kondo S, Smith KJ, McMullen BA, Smith LF. Characterization of a protein C activator from Agkistrodon contortrix contortrix venom. J Biol Chem. 1987; 262(26): 12607-13.
11.Bajwa SS, Markland FS Jr. A new method for purification of the thrombin-like enzyme from the venom of the eastern diamondback rattlesnake. Thromb Res. 1979; 16(1-2): 11-23.
12. Zhang Y, Wisner A, Maroun RC, Choumet V, Xiong Y, Bon C. Trimeresurus stejnegeri snake venom plasminogen activator. Site-directed mutagenesis and molecular modeling. J Biol Chem. 1997; 272(33): 20531-7.
13.Murayama N, Saguchi K, Mentele R, Assakura MT, Ohi H, Fujita Y, Camargo AC, Higuchi S, Serrano SM. The unusual high molecular mass of Bothrops protease A, a trypsin-like serine peptidase from the venom of Bothrops jararaca, is due to its high carbohydrate content. Biochim Biophys Acta. 2003; 1652(1): 1-6.
14.Zhu Z, Liang Z, Zhang T, Zhu Z, Xu W, Teng M, Niu L. Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases. J Biol Chem. 2005; 280(11): 10524-9.
15.Parry MA, Jacob U, Huber R, Wisner A, Bon C, Bode W. The crystal structure of the novel snake venom plasminogen activator TSV-PA: a prototype structure for snake venom serine proteinases. Structure. 1998; 6(9): 1195-206.
16.Braud S, Parry MA, Maroun R, Bon C, Wisner A. The contribution of residues 192 and 193 to the specificity of snake venom serine proteinases. J Biol Chem. 2000; 275(3): 1823-8.
17.Jia YH, Jin Y, Lu QM, Li DS, Wang WY, Xiong YL. Jerdonase, a novel serine protease with kinin-releasing and fibrinogenolytic activity from Trimeresurus jerdonii venom. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao(Shanghai). 2003; 35(8): 689-94.
18.Serrano SM, Hagiwara Y, Murayama N, Higuchi S, Mentele R, Sampaio CA, Camargo AC, Fink E. Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase(KN-BJ) from the venom of Bothrops jararaca, and molecular cloning and sequence analysis of its cDNA. Eur J Biochem. 1998; 251(3): 845-53.
19.Komori Y, Tatematsu R, Tanida S, Nikai T. Thrombin-like enzyme, flavovilase, with kinin-releasing activity from Trimeresurus flavoviridis(habu) venom. J Nat Toxins. 2001; 10(3): 239-48.
20.Hung CC, Chiou SH. Fibrinogenolytic proteases isolated from the snake venom of Taiwan habu: serine proteases with kallikrein-like and angiotensin-degrading activities. Biochem Biophys Res Commun. 2001; 281(4): 1012-8.
21.Matsui T, Sakurai Y, Fujimura Y, Hayashi I, Oh-Ishi S, Suzuki M, Hamako J, Yamamoto Y, Yamazaki J, Kinoshita M, Titani K. Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen and kininogen. Eur J Biochem. 1998; 252(3): 569-75.
22.Wang YM, Wang SR, Tsai IH. Serine protease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Biochem J. 2001; 354(1): 161-8.
23.Lottenberg R, Christensen U, Jackson CM, Coleman PL. Assay of coagulation proteases using peptide chromogenic and fluorogenic substrates. Methods Enzymol. 198; 80(Pt C): 341-61.
24.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680-5.
25.Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987; 155: 335-50.
26.Itoh N, Tanaka N, Mihashi S, Yamashina I. Molecular cloning and sequence analysis of cDNA for batroxobin, a thrombin-like snake venom enzyme. J Biol Chem. 1987; 262(7): 3132-5.
27.Burkhart W, Smith GF, Su JL, Parikh I, LeVine H 3rd. Amino acid sequence determination of ancrod, the thrombin-like alpha-fibrinogenase from the venom of Akistrodon rhodostoma. FEBS Lett. 1992; 297(3): 297-301.
28.Shieh TC, Kawabata S, Kihara H, Ohno M, Iwanaga S. Amino acid sequence of a coagulant enzyme, flavoxobin, from Trimeresurus flavoviridis venom. J Biochem(Tokyo). 1988; 103(4): 596-605.
29.Felicori LF, Souza CT, Velarde DT, Magalhaes A, Almeida AP, Figueiredo S, Richardson M, Diniz CR, Sanchez EF. Kallikrein-like proteinase from bushmaster snake venom. Protein Expr Purif. 2003; 30(1): 32-42.
30.Utaisincharoen P, Mackessy SP, Miller RA, Tu AT. Complete primary structure and biochemical properties of gilatoxin, a serine protease with kallikrein-like and angiotensin-degrading activities. J Biol Chem. 1993; 268(29): 21975-83.
31.Au LC, Lin SB, Chou JS, Teh GW, Chang KJ, Shih CM. Molecular cloning and sequence analysis of the cDNA for ancrod, a thrombin-like enzyme from the venom of Calloselasma rhodostoma. Biochem J. 1993; 294(Pt 2): 387-90.
32.Henschen-Edman AH, Theodor I, Edwards BF, Pirkle H. Crotalase, a fibrinogen-clotting snake venom enzyme: primary structure and evidence for a fibrinogen recognition exosite different from thrombin. Thromb Haemost. 1999; 81(1):81-6.
33.Hahn BS, Yang KY, Park EM, Chang IM, Kim YS. Purification and molecular cloning of calobin, a thrombin-like enzyme from Agkistrodon caliginosus(Korean viper). J Biochem(Tokyo). 1996; 119(5): 835-43.
34.Park D, Kim H, Chung K, Kim DS, Yun Y. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon. 1998; 36(12): 1807-19.
35.Pan H, Du X, Yang G, Zhou Y, Wu X. cDNA cloning and expression of acutin. Biochem Biophys Res Commun. 1999; 255(2): 412-5.
36.Fan CY, Qian YC, Yang SL, Gong Y. Cloning, sequence analysis and expression in E. coli of the cDNA of the thrombin-like enzyme(pallabin) from the venom of Agkistrodon halys pallas. Biochem Mol Biol Int. 1999; 47(2): 217-25.
37.Hung CC, Huang KF, Chiou SH. Characterization of one novel venom protease with beta-fibrinogenase activity from the Taiwan habu(Trimeresurus mucrosquamatus): purification and cDNA sequence analysis. Biochem Biophys Res Commun. 1994; 205(3): 1707-15.
38.Deshimaru M, Ogawa T, Nakashima K, Nobuhisa I, Chijiwa T, Shimohigashi Y, Fukumaki Y, Niwa M, Yamashina I, Hattori S, Ohno M. Accelerated evolution of crotalinae snake venom gland serine proteases. FEBS Lett. 1996; 397(1): 83-8.
39.Hahn BS, Baek K, Kim WS, Lee CS, Chang IL, Kim YS. Molecular cloning of capillary permeability-increasing enzyme-2 from Agkistrodon caliginosus (Korean viper). Toxicon. 1998; 36(12): 1887-93.
40.Malhotra A, Thorpe RS. A phylogeny of the trimeresurus group of pit vipers: new evidence from a mitochondrial gene tree. Mol Phylogenet Evol. 2000; 16(2): 199-211.
41.Zhang Y, Gao R, Lee WH, Zhu SW, Xiong YL, Wang WY. Characterization of a fibrinogen-clotting enzyme from Trimeresurus stejnegeri venom, and comparative study with other venom proteases. Toxicon. 1998; 36(1): 131-42.
42.Gao R, Zhang Y, Meng QX, Lee WH, Li DS, Xiong YL, Wang WY. Characterization of three fibrinogenolytic enzymes from Chinese green tree viper (Trimeresurus stejnegeri) venom. Toxicon. 1998; 36(3):457-67.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文