(100.25.42.117) 您好!臺灣時間:2021/04/21 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭又華
研究生(外文):Yiu-Hua Cheng
論文名稱:急性呼吸道症候群冠狀病毒核殼蛋白質與細胞因子Daxx之專一性結合作用
論文名稱(外文):Specific interaction between SARS-CoVnucleocapsid protein and cellular factor Daxx
指導教授:張明富
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:63
中文關鍵詞:急性呼吸道症候群核殼蛋白質
外文關鍵詞:SARSnucleocapsidDaxx
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在2002年中國南方廣東省,爆發了一種非典型肺炎疾病Severe Acute Respiratory Syndrome (SARS),並且在2003年迅速擴散到世界各地。受到SARS感染的病人會出現以下症狀,包括: 發燒、呼吸困難、淋巴球數目減少、下呼吸道感染、腹瀉等,並且造成約10%的致死率。經由科學研究者的努力在SARS病患及和臨床檢體一起培養的非洲綠猴腎臟細胞Vero E6 中,成功分離出一株新型冠狀病毒,命名為SARS-CoV,同時利用猴子模式證實此為引起SARS的元兇。SARS-CoV為一含有套膜之病毒,基因體為一單股正向的RNA,長約30,000個核苷酸。病毒顆粒由四種結構性蛋白質: spike(S)、membrane(M)、envelope(E),及nucleocapsid(N) 所組成。
SARS-CoV N蛋白質會與病毒RNA纏繞,負責病毒顆粒的包裹及釋放,並且也會自己形成雙體結構。除此之外在血清缺乏的哺乳類動物細胞中也發現N 蛋白質會誘發細胞凋亡並促使肌動蛋白重新組裝。在本篇論文中首先利用高通量酵母菌功能性基因模組由200個跟細胞凋亡相關之蛋白質中篩選出一個細胞因子Daxx (Death-associated protein)會與N蛋白質產生交互作用。後續更利用酵母菌二次雜交系統分析發現N蛋白質是與Daxx區域第570-740個胺基酸處結合。Daxx的羧端區域會與許多蛋白質產生交互作用包括: SUMO、Fas、PML及ETS-1等。推測N蛋白質是否會受到SUMO的調控修飾。為了證實這個假設,將可以表現N蛋白質之質體及三種可以表現不同SUMO蛋白質之質體: SUMO-1、SUMO-2及SUMO-3共轉染入293T細胞。由西方墨點法實驗發現N蛋白質可能主要受到SUMO-1及SUMO-2蛋白質的轉譯後修飾。除此之外,也由活體外實驗推測在N蛋白質N-terminal的第1-235個胺基酸處存在兩個SUMO-1的 sumoylation sites。未來可以進一步去研究受到SUMO修飾的N蛋白質在病毒生活史及致病過程中可能扮演的角色。本論文研究找出一個新的宿主蛋白質Daxx會與病毒結構蛋白質N產生交互作用,對於後續研究病毒蛋白質的功能具有貢獻。
In November 2002, an atypical pneumonia, Severe Acute Respiratory Syndrome (SARS), emerged in Guangdong Province, Southern China, and spread worldwide in 2003. SARS infection exhibits a wide clinical course, mainly characterized by fever, dyspnea, lymphopenia, lower tract respiratory infection, and diarrhea, and causes death in approximately 10% of cases. A novel coronavirus termed SARS-CoV was isolated from SARS patients and Vero E6 cells inoculated with clinical specimens, and identified to be the causative agent of SARS in monkey model experiment. SARS-CoV is an enveloped, positive-sense single-stranded RNA virus with about 30,000 nucleotides in length. The virus particle consists of four structural proteins: spike (S), membrane (M), envelope (E), and nucleocapsid (N).
The SARS-CoV N protein possesses RNA-binding activity and is capable of undergoing self-dimerization. The N protein was also demonstrated to induce apoptosis and actin reorganization in mammalian cells under stress conditions. In this study, Daxx (Death-associated protein) was identified to be an N-interacting protein by performing functional yeast array analysis. Yeast two hybrid system further demonstrated that the N protein specifically bound to the C-terminal domain of Daxx protein from 570 to 740 amino acid residues. The C-terminal region is also involved in binding of Daxx to many proteins such as, SUMO, Fas, PML, and Ets-1. It is possible that the SARS-CoV N protein can be modified by SUMO proteins. To test this hypothesis, 293T cells were cotransfected with plasmids encoding the N protein and various SUMO proteins including SUMO-1, SUMO-2, and SUMO-3. Western blot analysis indicated that the N protein may be preferentially modified by SUMO-1 and SUMO-2 proteins. In addition, in vitro sumoylation assay identified two sumoylation sites in the N-terminal 235 amino acid residues of the N protein. Functional significances of the SUMO-modified N protein involved in the life cycle and pathogenesis of SARS-CoV need to be further elucidated. This study suggests a new link between host cell machinery and a SARS-CoV structural component, and will help us to understand the role of N protein .
中文摘要……………………...………..I
英文摘要……………………...………………..Ⅲ
縮寫表…………………………..…….…Ⅴ
緒論…………………………………..………1
實驗材料來源………………………….12
實驗方法…………………………………15
實驗結果……………….………………28
討論…….………………………………32
圖表…………….……………………36
參考文獻……………………………51
1. J.S. M. Peiris, Y. Guan, K. Y. Yuen, Severe acute respiratory syndrome. Nature Medicine, Vol. 10, s 88-s 97 (2004)

2. J. Ziebuhr, Molecular biology of severe acute respiratpry syndrome. Current Opinion in Microbiology, Vol. 7, 412-419 (2004)

3. C. Drosten, S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz and H. W. Doerr, Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. The New England Journal of Medicine, Vol. 348, 1967-1976 (2003)

4. T. G. Ksiazek, D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E. Ling, C. D. Humphrey, W. J. Shieh, J. Guarner, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. Bellini, L. J. and Anderson. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. The New England Journal of Medicine, Vol. 348, 1953-1966 (2003)

5. Y. Guan, BJ. Zheng, YQ. He, XL. Liu, ZX. Zhuang, CL. Cheung, SW. Luo, PH. Li, LJ. Zhang, YJ. Guan, Isolation and characterization of virus related to the SARS coronavirus from animals in sothern China. Science, Vol. 302, 276-278(2003)

6. M. M. C. Lai and K. V. Holmes, Coronaviridae: The Viruses and Their Replication. Field Virology, 4th ed., 1163-1185 (2001)

7. V. Thiel, K.A Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr, Mechanisms and Enzymes Involved in SARS Coronavirus Genome Expression. Journal of General Virology, Vol. 84, 2395-2315 (2003)

8. T. Kuiken, R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim , A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris and A. D. Osterhaus. Newly Discovered Coronavirus as the Primary Cause of Severe Acute Respiratory Syndrome. Lancet, Vol. 362, 263-270 (2003)

9. C. Drosten, S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz and H. W. Doerr, Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. The New England Journal of Medicine, Vol. 348, 1967-1976 (2003)

10.K. Stadler, V. Masighani, M. Eickmann, S. Becker, S. Abrignani, H. D. Klenk and R. Rappuoli, SARS-beginning to understand a new virus. Nature Review Microbiology, Vol. 1, 209-218 (2003)

11. W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J.L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe and M. Farzan, Angiotensin-coverting Enzyme 2 is a Functional Receptor for the SARS Coronavirus. Nature, Vol. 426, 450-454 (2003)

12. S. K. Wong, W. H. Li, M. J. Moore, H. Choe and M. Farzan, A193-Amino Acid Fragment of the SARS Coronavirus S Protein Efficiently Binds Angiotensin-converting Enzyme 2. The Journal of Biological Chemistry, Vol. 279, 3197-3201 (2004)

13. G. J. Babcock, D. J. Esshaki, W. D. Thomas Jr. and D. M. Ambrosino, Amino Acids 270 to 512 of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Are Required for Interaction with Receptor. Journal of Virology, Vol. 78, 4552-4560 (2004)
14. P. G. Wang, J. Chen, A. H. Zheng, Y. C. Nie, X. L. Shi, W. Wang, G. G. Wang, M. Luo, H. J. Liu, L. Tan, X. J. Song, Z. Wang, X. L. Yin, X. X. Qu, X. J. Wang, T. T. Qing, M. X. Ding and H. K. Deng, Expression Cloning of Functional Receptor used by SARS Coronavirus. Biochemical and Biophysical Research Communications, Vol. 315, 439-444 (2004)

15. P.Zhao, J-S. KE, Z-L. Qin, H. Ren, L-J. Zhao, J-G. Yui, J. Gao, S-Y. Zhu, Z-T. Qi, DNA vaccine of SARS-Cov S gene induces antibody response in mice. Acta Biochim Biophys Sin (Shanghai), Vol. 36, 37-41 (2004)

16. J. H. Sui, W. Li, A. Murakami, A. Tamin, L. J.Matthews, S. K. Wong, M. J. Moore, A. S. Tallarico, M. Olurinde, H. Choe, L. J. Anderson, W. J. Bellini, M. Farzan and W. A. Marasco, Potent Neutralization of Severe Acute Respiratory Syndrome (SARS) Coronavirus by a Human mAb to S1 Protein that Blocks Receptor Association. Proceedings of the National Academy of Science, Vol. 101, 2536-2541 (2004)

17.H-S. Wu, Y-C. Hsieh, I-J. Su, T-H. Lin, S-C. Chiu, Y-F. Hsu, J-H. Lin, M-C. Wang, J-Y. Chen, P-W. Hsiao, G-D. Chang, Andrew H.-J. Wang, H-W. Ting, C-M. Chou, C-J. Huang, Early Detection of Antibodies against Various Structural Proteins of the SARS-Associated Coronavirus in SARS Patients. Journal of Biomedical Science, Vol. 11, 117-126 (2004)

18. W. T. Ying, Y. W. Hao, Y. J. Zhang, W. M. Peng, E. Qin, Y. Cai, K. H. Wei, J. W. Wang, G. H. Chang, W. Sun, S. J. Dai, X. H. Li, Y. P. Zhu, J. Q. Li, S. F. Wu, L. H. Guo, J. Q. Dai, J. L. Wang, P. Wan, T. G. Chen, C. J. Du, D. Li, J. Wan, X. Z. Kuai, W. H. Li, R. Shi, H. D. Wei, C. Cao, M. Yu, H. Liu, F. T. Dong, D. G. Wang, X. M. Zhang, X. H. Qian, Q. Y. Zhu and F. C. He, Proteomic Analysis on Structural Proteins of Severe Acute Respiratory Syndrome Coronavirus. Proteomics, Vol. 4, 492-504 (2004)

19. E.Mortola, P.Roy, Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS lett, Vol. 576, 174-178 (2004)

20. R. He, F. Dobie, M. Ballantine, A. Leeson, Y. Li, N. Bastien, T. Cutts, A. Andonov, J. Cao,T. F. Booth, F. A. Plummer, S. Tyler, L. Baker, X. Li, Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, Vol. 316, 476-483 (2004)

21. M. A. Marra, S. J. M. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. N. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and Rachel L. Roper, The Genome Sequence of the SARS-Associated Coronavirus. Science, Vol. 300, 1399-1404 (2003)

22. P. A. Rota, M. S. Oberste, S. S. Monroe, W. A. Nix, R. Campagnoli, J. P. Icenogle, S. Peñaranda, B. Bankamp, K. Maher, M-H Chen, S. Tong, A. Tamin, L. Lowe, M. Frace, J. L. DeRisi, Q.Chen, D. Wang, D. D. Erdman, T. C. T. Peret, C. Burns, T. G. Ksiazek, P. E. Rollin, A. Sanchez, S. Liffick, B. Holloway, J. Limor, K. McCaustland, M.Olsen-Rasmussen, R. Fouchier, S. Günther, A. D. M. E. Osterhaus, C. Drosten, M. A. Pallansch, L. J. Anderson, and W. J. Bellini, Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. Science, Vol. 300 1394-1399 (2003)

23. S. A. Stohlman , R. S. Baric, G. W. Nelson, L. H. Soe, L. M. Welter, and R. J. Deans, Specific interaction between coronavirus leader RNA and nucleocapsid protein. Journal of Viology, Vol. 62, 4288-4295 (1988)

24. T. Wurm, H. Chen, P.Britton, G.Brooks, J.A. Hiscox, Localization to the nucleolus is a common feature of coronavirus nucleoproteins and the protein may disrupt host cell division. Journal of Virology, Vol. 75, 9345-9356. (2001)

25. Y.-J.Tan, E.Teng , S.Shen, T. H. P. Tan, P. –Y Goh, B. C. Fielding, E.-E.Ooi, H. -C. Tan, S.G.Lim, W.Hong, A novel SARS coronavirus protein, U274, is transported to the cell surface and undergoes ebdocytosis. Journal of Viology, Vol. 78, 6723-6734 (2004c)

26. C.-J.Yu, Y.-C.Chen, C. -H. Hsiao, T. -C. Kuo, S. C. Chang, C. –Y. Lu, W. -C. Wei, C. -H. Lee, L. -M. Huang, M. -F. Chang, H. -N. Ho, F. -J. S. Lee, Identification of a novel protein 3a from severe acute respiratory syndrome coronavirus. FEBS letters, Vol. 565, 111-116 (2004)

27. R. Zeng, R. F. Yang, M. D. Shi, M. R. Jiang, Y. H. Xie, H. Q. Ruan, X. S. Jiang, L. Shi, H. Zhou, L. Zhang, X. D. Wu, Y. Lin, Y. Y. Ji, L. Xiong, Y. Jin, E. H. Dai, X. Y. Wang, S. B. Yi, J. Wang, H. X. Wang, C. E. Wang, Y. H. Gan, Y. C. Li, J. T. Cao, J. P. Zuo, S. F. Shan, E. Xie, S. H. Chen, Z. Q. Jiang, X. Zhang, Y. Wang, G. Pei, B. Sun, J. R. Wu, Characterization of the 3a protein of SARS-associated coronavirus in infected vero E6 cells and SARS patients. Journal of Molecular Biology, Vol. 341, 271-279 (2004b)

28. J. P. Guo, M. Petric, W. Campbell, P. L. McGeer,
SARS coronavirus peptides recognized by antibodies in the sera of convalescent cases. Virology, Vol. 324, 251-256 (2004)

29. Y. -J. Tan, P. -Y. Goh, B. C. Fielding, S. Shen, C. -F. Chou, J. -L. Fu, H. N. Leong, Y. S. Leo, E. E. Ooi, A. E. Ling, S. G. Lim, W. Hong, Profile of antibody responses against SARS-coronavirus recombinanat proteins and their potential use as diagnostic merkers. Clinical and Diagnostic Laboratory Immunology, Vol. 11,362-371 (2004b)

30. I. J. Liu, P. R. Hsueh, C. T. Lin, C. Y. Chiu, ,C. L. Kao, M. Y. Liao, H. C. Wu, Diease-specific B cell epitopes for serum antibodies from patients with severe acute respiratory syndrome(SARS) and serologic detection of SARS antibodies by epitope-based peptide antigens. Journal of Infectious Disease, Vol. 190, 797-809 (2004a)

31. Y. -J. Tan, B. C. Fielding, P. -Y. Goh, S. Shen, T. H. P. Tan, S. G. Lim, W. Hong, Over-expression of 7a, a protein specifically encoded by the Severe Acute Respiratory Syndrome(SARS)-coronavirus, induces apoptosis via a caspase-dependent pathway. Journal of Viology, Vol. 78, 14043-14047 (2004a)

32. B. C. Fielding, Y. -J. Tan, S. Shen, T. H. P. Tan, E. -E. Ooi, S. G. Lim, W. Hong, P. -Y. Goh, Characterization of a unique group-specific protein(U122) of the Severe acute Respiratory Syndrome(SARS) coronavirus. Journal of Viology, Vol. 78, 7311-7318 (2004)

33. Q. F. Zhang, J. M. Cui, X. J. Huang, H. Y. Zheng, J. C. Huang, L. Fang, K. P. Li and J.Q. Zhang, The Life Cycle of SARS Coronavirus in Vero E6 Cells. Journal of Medical Virology, Vol. 73, 332-337 (2004)

34. R. Macneughton, H.A. Davies. Ribonucleoprotein-like structures from coronavirus particles. Journal of General Virology, Vol. 39, 545-549 (1978)

35. M.C. Lai, D. Cavanagh, The molecular biology of coronavirus. Advances in Virus Research, Vol. 48 ,1-100 (1997)

36. Y. Wang, X. Zhang, The nucleocapsid protein of coronavirus pouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonuclearprotein A1 in vitro and in vivo. Virology , Vol. 265,96-109 (1999)

37. R. He, A. Leeson, A. Andonov, Y. Li, N. Bastien, J. Cao, C. Osiowy, F. Dobie, T. Cutts, M. Ballantine, X. Li, Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, Vol. 311, 870-876 (2003)

38. R. He, F. Dobie, M. Ballantine, A. Leeson, Y. Li, N. Bastien, T. Cutts, A. Andonov, J. Cao,T. F. Booth, F. A. Plummer, S.Tyler, L. Baker, X. Li, Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochemical and Biophysical Research Communications, Vol. 316, 476-483 (2004)

39. M. Surjit, B. Liu, P. Kumar, V. T.K. Chow, S. K. Lal, The nucleocapsid protein of the SARS coronavirus is capable of self-association through a C-terminal 209 amino acid interaction domain. Biochemical and Biophysical Research Communications, Vol. 317, 1030-1036 (2004)

40. I-M. Yu, C. L. T. Gustafson, J. Diao, J. W. Burgner Ⅱ, Z. Li, J. Zhang, J. Chen, Recombinant Severe Acute Respiratory Syndrome(SARS) Coronavirus Nucleocapsid Protein Forms a Dimer through Its C-terminal Domain. The Journal of Biological Chemistry, Vol. 280, 23280-23286 (2005)

41. C. Luo, H. Luo, S. Zheng, C. Gui, L. Yue, C. Yu, T. Sun, P. He, J. Chen, J. Shen, X. Luo, Y. Li, H. Liu, D. Bai, J. Shen, Y. Yang, F. Li, J. Zuo, R. Hilgenfeld, G. Pei, K. Chen, X. Shen, H. Jiang, Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochemical and Biophysical Research Communications, Vol. 321, 557-565 (2004)

42. M. Surjit, B. Liu, S. Jammel, V.T. K. Chow , S. K.Lal. The SARS coronavirus nucleocapsid(N) protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochemical Journal, Vol. 383, 13-18 (2004)

43. X. Yang, R. Khosravi-Far, H. Y. Chang, D. Baltimore. Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis. Cell , Vol 89 , 1067-1076 (1997)

44. S. Torii, D. A. Egan, R. A. Evans, J. C. Reed, Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs) . The EMBO Journal , Vol. 18, 6037-6049 (1999)

45. A. D. Hollenbach, , J. E. Sublett, , Mcpherson, C. J. and Grosveld, G, The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. The EMBO Journal, Vol. 18, 3702-3711(1999)

46. J. S. Michaelson, The Daxx enigma. Apoptosis, Vol. 5, 217-220 (2000)

47. H. Li, C. Leo, J. Zhu, X. Y. Wu, E. –J. Park, and J. D. Chen. Molecular and Cellular Biology, Vol. 20, 1784-1796 (2000a)

48. C. C. Chang, D. Y. Lin, H, I, Fang, R, H, Chen, and H, M, Shih, Daxx Mediates the Small Ubiquitin-like Modifier-dependent Transcriptional Repression of Smad 4. The Journal of Biological Chemistry, Vol. 280, 10164-10173 (2005)

49. A. D. Hollenbach, C. J. McPherson, E. J. Mientjes, R. Lyengar, G. Grosveld . Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek . Journal of Cell Science, Vol. 115, 3319-3330 (2002)

50. F. Melchior, Annu. Reviews in Cellular and Developmental Biology, Vol. 16, 591-626 (2000)

51. J. S. Seeler, and A. Dejean, Nuclear And Unclear Functions Of SUMO. Nature Reviews Molecular Cell Biology, Vol. 4,690-699 (2003)

52. M. J. Matunis, J. Wu, and G. Blobel, SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. Journal of Cell Biology, Vol. 140. 499-509 (1998)

53. J. M. Desterro, M. S. Rodriguez, and R.T. Hay, SUMO-1 Modification of IκBα Inhibits NF-κB Activation. Molecular Cell, Vol. 2, 233-239 (1998)

54. E. S. Johnson, Protein Modification By SUMO. Annual Review of Biochemistry, Vol. 73, 355-382 (2004)

55. D. W. Girdwood, M. H.Tatham, and R. T. Hay, SUMO and transcriptional regulation. Seminar in Cell and Developmental Biology, Vol. 15, 201-210 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔