跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何宜城
研究生(外文):Yi-Chern Ho
論文名稱:篦蔴子毒蛋白藉由人類B型血球抗原的羧端131個殘基片段而誘發細胞凋亡形態變化之功能性研究
論文名稱(外文):Functional Studies of Ricin-induced Apoptotic Morphological Changes Mediated by CTF131 of BAT3
指導教授:林榮耀林榮耀引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物化學暨分子生物學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:69
中文關鍵詞:篦蔴子毒蛋白
外文關鍵詞:CTF131
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
篦蔴子毒蛋白係屬於第二型核糖體去活性蛋白質家族成員之一,是由兩個單元藉由一對雙硫鍵所組成,包括一個具有酵素活性的A鏈(RTA)以及一個能與半乳糖結合的B鏈(RTB)。篦蔴子毒蛋白最早係自大戟科篦蔴屬植物的種子中萃取而得。目前對於篦蔴子毒蛋白如何進入細胞中及其作用機制為何,科學家們已有了一些的研究與瞭解。首先,篦蔴子毒蛋白藉由其RTB與細胞膜表面上接受器的半乳糖單元結合,並經由內噬作用進入細胞中,經過轉運作用,最後RTA會利用其RNA N-醣苷水解酶活性專一性地移除28S核糖體RNA上第4,324個腺嘌呤殘基,使得核糖體失去正常活性,而達到抑制蛋白質的生合成,進而毒殺細胞。
近年來的研究報告顯示,篦蔴子毒蛋白除了透過抑制蛋白質轉譯作用而造成細胞死亡,亦可透過誘發計劃性程式凋亡的途徑而達成其毒殺細胞的作用。在本實驗室,過去致力於篦蔴子毒蛋白如何誘發計劃性程式凋亡的相關機制之探討,發現BAT3係一個RTA結合蛋白質,並且證實BAT3在篦蔴子毒蛋白誘發細胞凋亡中所扮演的關鍵性角色。此外,BAT3會被篦蔴子毒蛋白所活化的第三型細胞凋亡酶所切割,產生一個羧基端131個胺基酸殘基的片段,命名為CTF131。令人驚奇地,在人類子宮頸癌細胞株(HeLa cells)中表現CTF131片段會造成許多細胞凋亡形態上的特徵,包括磷酯絲胺酸外暴到細胞膜外、細胞形狀圓起和皺縮、細胞核緊緻化、肌動蛋白質遭受破壞等。在本研究中,為了要探索與CTF131誘發細胞凋亡及形態變化有關的分子,酵母菌雙雜合篩選系統被用來尋找細胞內的CTF131結合蛋白質。我們成功地找到了兩個CTF131結合蛋白質,分別鑑定為PLK4和PRDX3。因為CTF131對PLK4有較強的結合能力,所以本研究將著重於探討CTF131與PLK4的交互作用,以及PLK4可能在篦蔴子毒蛋白誘發細胞凋亡中所扮演的角色。經由免疫共沉澱和免疫細胞染色的方法,我們更進一步證實了CTF131與PLK4在細胞中的確具有相互結合的關係。從共軛焦顯微鏡觀察,發現PLK4會在有絲分裂時期均勻地分布在染色體上。藉由試管內激活酶分析,我們也發現了CTF131會抑制PLK4的激活酶活性。總結來說,本研究對於篦蔴子毒蛋白誘發細胞凋亡提供了一個嶄新的觀點與解釋,CTF131藉由抑制PLK4活性而影響紡綞絲的形成與功能,導致有絲分裂進行受阻,進而達到毒殺細胞的作用。
Ricin is a powerful toxin protein and belongs to one of typeⅡ ribosome inactivating proteins (RIPs) family, composing of a toxophoric A-chain (RTA) and a galactose-binding B-chain (RTB). Originally, ricin was isolated from the seeds of Ricinus communis (castor beans). The RTB possesses a lectin activity which can bind to the galactose moiety of glycoproteins or glycolipids on the cell membrane and facilitate the receptor-mediated endocytosis, while the RTA utilizes its RNA N-glycosidase activity to specifically remove the 4,324th adenine residue from 28S rRNA and inhibit protein biosynthesis.
Recently, several evidences revealed that ricin triggered cell death not only through inhibition of protein translation but also through induction of apoptosis by activating caspase-3 activity. In the previous study, it had been demonstrated that BAT3 (human HLA-B-associated transcript 3) was a RTA-binding protein and it was quite crucial for ricin-induced apoptosis. Moreover, BAT3 was able to be cleaved by ricin-induced caspase-3 activity and released a C-terminal 131 residues fragment designated as CTF131. Surprisingly, overexpression of CTF131 in HeLa cell resulted in several characteristics of apoptotic features, including phosphatidylserine (PS) exposure, cell rounding and shrinkage, nuclear condensation, and F-actin disruption. To further understand the precise molecular mechanism about CTF131-induced apoptotic morphological changes, a yeast two-hybrid system using CTF131 as bait was employed to identify CTF131-binding proteins. Two clones were isolated during this screening. Through nucleotide sequencing and database search, these two clones have been shown to encode polo-like kinase4 (PLK4) and peroxiredoxin3 (PRDX3), respectively. Since PLK4 had a stronger binding affinity with CTF131 than PRDX3, the former was chosen as a major target in this study. The in vivo specific interaction between CTF131 and PLK4 was demonstrated by using co-immunoprecipitation and immunostaining. Our observations showed that PLK4 protein localized in the nuclei among chromosomes at M-phase, indicating that both of CTF131 and PLK4 were indeed physiologically relevant in cells. By in vitro kinase assay, it was suggested that CTF131 might inhibit the kinase activity of PLK4, using casein as substrates. Overall, to gain a new insight into ricin-triggered apoptosis, CTF131 perhaps contributed to ricin-induced apoptotic morphological changes by suppression of PLK4, affecting spindle dynamics and mitotic progression.
Abbreviations…………………………………………….…..…………………………….ш
中文摘要……………………………………………………………………………….……Ⅴ
Abstract………………………………………………………………………………..……Ⅶ
Introduction……………………………………..…………………………………………..1
Materials and Methods……………………………………….……………………………7
1.Materials……………………………………………………………………………………..7
2.Plasmid construction………………………………………………………………………...9
3.Plasmid maxi-preparation by ultracentrifugation……..……………………………………15
4.Western blotting analysis…………………………………………………………………...17
5.Yeast two-hybrid system……………………………………………………………………21
6.Cell culture and transient transfection……………………………………………………...28
7.Co-immunoprecipitation…………………………………………………………………....30
8.Immunofluorescence and confocal microscopy…………………………………………….31
9.In vitro kinase assay………………………………………………………………………...33
Results…………….…………………………………………………………………………34
1.Identification of CTF131-interacting proteins by using yeast two-hybrid system…………34
2.Protein expression and intracellular localization of PLK4…………………………………39
3.The specific interaction between CTF131 and PLK4………………………………………41
4.CTF131 could inhibit the kinase activity of PLK4………………………………………....42
Discussion…………………………………………………………...……………...……….43
PLK4 (Sak) gene structure……………………………………………………………………44
Polo/PLK family function…………………………………………………………………….45
The relationship between CTF131 and PLK4………………………………………………..46
Clinical application of immunotoxins………………………………………………………..47
References………………………………………………………...……………….………..66
1.Lin JY, T.K., Chen CC, Lin LT, and Tung TC, Abrin and ricin: new anti-tumor subatances. Nature, 1970. 227(255): p. 292-293.
2.Lin JY, C.Y., Huang LY, and Tung TC, The cytotoxic effects of abrin and ricin on Ehrlish ascites tumor cells. Toxicon., 1973. 11(4): p. 379-381.
3.Tung TC, L.J., and Hsu CT, The mechanism of the anti-cancer activities of abrin and ricin. Taiwan Yi Xue Hui Za Zhi., 1974. 73(11): p. 682-684.
4.Hsu CT, L.J., and Tung CT, Further report on therapeutic effect of abrin and ricin on human cancers. Taiwan Yi Xue Hui Za Zhi., 1974. 73(9): p. 526-542.
5.Stirpe, F., et al., Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y), 1992. 10(4): p. 405-12.
6.BArbieri, L., and Stripe, F., Ribosome-inactivating proteins from plants: properties and possible uses. Cancer Surveys, 1982. 1: p. 489-520.
7.Barbieri, L., et al., Inhibition of protein synthesis in vitro by proteins from the seeds of Momordica charantia (bitter pear melon). Biochem J, 1980. 186(2): p. 443-52.
8.Stirpe, F., et al., Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem J, 1983. 216(3): p. 617-25.
9.Yeung, H.W., et al., Trichosanthin, alpha-momorcharin and beta-momorcharin: identity of abortifacient and ribosome-inactivating proteins. Int J Pept Protein Res, 1988. 31(3): p. 265-8.
10.Olsnes, S. and A. Pihl, Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry, 1973. 12(16): p. 3121-6.
11.Lin, J.Y., Y.S. Shaw, and T.C. Tung, Studies on the active principle from Abrus precatorius L. leguminosae seed kernels. Toxicon, 1971. 9(2): p. 97-101.
12.Gasperi-Campani, A., et al., Modeccin, the toxin of Adenia digitata. Purification, toxicity and inhibition of protein synthesis in vitro. Biochem J, 1978. 174(2): p. 491-6.
13.Stirpe, F., et al., Inhibition of protein synthesis by a toxic lectin from Viscum album L. (mistletoe). Biochem J, 1980. 190(3): p. 843-5.
14.Lord, J.M., L.M. Roberts, and J.D. Robertus, Ricin: structure, mode of action, and some current applications. Faseb J, 1994. 8(2): p. 201-8.
15.Lin, J.Y., et al., Effect of crystalline ricin on the biosynthesis of protein, RNA, and DNA in experimental tumor cells. Cancer Res, 1971. 31(7): p. 921-4.
16.Lin, J.Y., et al., The inhibitory effect of crystalline ricin in Ehrlich ascites tumor. Taiwan Yi Xue Hui Za Zhi, 1970. 69(1): p. 53-7.
17.Endo, Y. and K. Tsurugi, The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem, 1988. 263(18): p. 8735-9.
18.Endo, Y. and K. Tsurugi, RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem, 1987. 262(17): p. 8128-30.
19.Montanaro, L., et al., Inhibition by ricin of protein synthesis in vitro. Inhibition of the binding of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 to ribosomes. Biochem J, 1975. 146(1): p. 127-31.
20.Benson, S., et al., On the mechanism of protein-synthesis inhibition by abrin and ricin. Inhibition of the GTP-hydrolysis site on the 60-S ribosomal subunit. Eur J Biochem, 1975. 59(2): p. 573-80.
21.Ghetie, V. and E.S. Vitetta, Chemical construction of immunotoxins. Mol Biotechnol, 2001. 18(3): p. 251-68.
22.Baluna, R., et al., The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp Cell Res, 2000. 258(2): p. 417-24.
23.Hughes, J.N., C.D. Lindsay, and G.D. Griffiths, Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum Exp Toxicol, 1996. 15(5): p. 443-51.
24.Sadakata, N., et al., Effects of glutathione-related compounds on increased caspase-3 and caspase-6-like activities in ricin-treated U937 cells. Biosci Biotechnol Biochem, 2000. 64(1): p. 202-5.
25.Higuchi, S., T. Tamura, and T. Oda, Cross-talk between the pathways leading to the induction of apoptosis and the secretion of tumor necrosis factor-alpha in ricin-treated RAW 264.7 cells. J Biochem (Tokyo), 2003. 134(6): p. 927-33.
26.Wu, Y.H., S.F. Shih, and J.Y. Lin, Ricin triggers apoptotic morphological changes through caspase-3 cleavage of BAT3. J Biol Chem, 2004. 279(18): p. 19264-75.
27.Banerji, J., et al., A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain. Proc Natl Acad Sci U S A, 1990. 87(6): p. 2374-8.
28.THOMAS KARN, U.H., GEORG WOLF, BJORN HOCK, KLAUS STREBHARDT and HELGA RUBSAMEN-WAIGMANN, Human SAK related to the PLK/polo family of cell cycle kinases shows high mRNA expression in testis. ONCOLOGY REPORTS, 1997. 4: p. 505-510.
29.Llamazares, S., et al., polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev, 1991. 5(12A): p. 2153-65.
30.Kitada, K., et al., A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5. Mol Cell Biol, 1993. 13(7): p. 4445-57.
31.Ohkura, H., I.M. Hagan, and D.M. Glover, The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev, 1995. 9(9): p. 1059-73.
32.Kumagai, A. and W.G. Dunphy, Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science, 1996. 273(5280): p. 1377-80.
33.Golsteyn, R.M., et al., Cell cycle analysis and chromosomal localization of human Plk1, a putative homologue of the mitotic kinases Drosophila polo and Saccharomyces cerevisiae Cdc5. J Cell Sci, 1994. 107 (Pt 6): p. 1509-17.
34.Simmons, D.L., et al., Identification of an early-growth-response gene encoding a novel putative protein kinase. Mol Cell Biol, 1992. 12(9): p. 4164-9.
35.Li, B., et al., Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem, 1996. 271(32): p. 19402-8.
36.Winkles, J.A. and G.F. Alberts, Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene, 2005. 24(2): p. 260-6.
37.Lane, H.A. and E.A. Nigg, Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J Cell Biol, 1996. 135(6 Pt 2): p. 1701-13.
38.Zhang, H., et al., B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem, 2004. 279(34): p. 35726-34.
39.Lee, K.S., et al., Plk is an M-phase-specific protein kinase and interacts with a kinesin-like protein, CHO1/MKLP-1. Mol Cell Biol, 1995. 15(12): p. 7143-51.
40.Yarm, F.R., Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol, 2002. 22(17): p. 6209-21.
41.Ouyang, B., et al., The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene, 1999. 18(44): p. 6029-36.
42.Toczyski, D.P., D.J. Galgoczy, and L.H. Hartwell, CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell, 1997. 90(6): p. 1097-106.
43.Descombes, P. and E.A. Nigg, The polo-like kinase Plx1 is required for M phase exit and destruction of mitotic regulators in Xenopus egg extracts. Embo J, 1998. 17(5): p. 1328-35.
44.Feng, Y., D.L. Longo, and D.K. Ferris, Polo-like kinase interacts with proteasomes and regulates their activity. Cell Growth Differ, 2001. 12(1): p. 29-37.
45.Carmena, M., et al., Drosophila polo kinase is required for cytokinesis. J Cell Biol, 1998. 143(3): p. 659-71.
46.Fode, C., et al., Sak, a murine protein-serine/threonine kinase that is related to the Drosophila polo kinase and involved in cell proliferation. Proc Natl Acad Sci U S A, 1994. 91(14): p. 6388-92.
47.Hudson, J.W., et al., Sak kinase gene structure and transcriptional regulation. Gene, 2000. 241(1): p. 65-73.
48.Swallow, C.J., et al., Sak/Plk4 and mitotic fidelity. Oncogene, 2005. 24(2): p. 306-12.
49.Fode, C., C. Binkert, and J.W. Dennis, Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol Cell Biol, 1996. 16(9): p. 4665-72.
50.Hudson, J.W., et al., Late mitotic failure in mice lacking Sak, a polo-like kinase. Curr Biol, 2001. 11(6): p. 441-6.
51.Olsnes, S., The history of ricin, abrin and related toxins. Toxicon, 2004. 44(4): p. 361-70.
52.Rao, P.V., et al., Mechanism of ricin-induced apoptosis in human cervical cancer cells. Biochem Pharmacol, 2005. 69(5): p. 855-65.
53.Sillje, H.H. and E.A. Nigg, Signal transduction. Capturing polo kinase. Science, 2003. 299(5610): p. 1190-1.
54.Jang, Y.J., et al., Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc Natl Acad Sci U S A, 2002. 99(4): p. 1984-9.
55.Leung, G.C., et al., The Sak polo-box comprises a structural domain sufficient for mitotic subcellular localization. Nat Struct Biol, 2002. 9(10): p. 719-24.
56.Jordan, M.A., et al., Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res, 1996. 56(4): p. 816-25.
57.Vitetta, E.S., Immunotoxins and vascular leak syndrome. Cancer J, 2000. 6 Suppl 3: p. S218-24.
58.Vitetta, E.S. and P.E. Thorpe, Immunotoxins containing ricin or its A chain. Semin Cell Biol, 1991. 2(1): p. 47-58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top