(3.236.6.6) 您好!臺灣時間:2021/04/22 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭嘉強
研究生(外文):Chia-Chiang Hsiao
論文名稱:具微共振腔結構之上發光型有機發光元件光學模擬分析
論文名稱(外文):Optical Simulation and Analysis of Top-Emitting Organic Light Emitting Device with a Microcavity
指導教授:李君浩
指導教授(外文):Jiun-Haw Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:92
中文關鍵詞:有機發光元件光學模擬微共振腔
外文關鍵詞:OLEDsimulationmicrocavity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們使用一個電磁模型模擬上發光型有機發光二極體(TOLED)的光學特性。上發光型有機發光元件可被視為一維的Fabry-Perot微共振腔,微共振腔效應造成發光強度和光譜隨元件結構和觀察視角產生不可忽略之變化。我們設計三種不同的陰極結構,分別為氧化銦錫、銀和在銀上方覆蓋一層硒化鋅的上發光型有機發光元件,計算元件在正上方強度和所有光通量總和。使用硒化鋅覆蓋銀做為陰極的元件,在正上方強度和總流量最佳化後,可獲得比其它兩種陰極元件個別最佳化後更高的出光量,而氧化銦錫則是最低。當元件在正上方強度最佳化後,其光譜較不會隨視角而偏移,而當元件在總光通量最佳化後,其光譜隨視角增大會明顯往短波長偏移。
我們利用元件正上方強度最佳化後,其光譜較不會隨視角改變的特性來調變發光光譜。此外,我們提出一新結構,係為置入一層硒化鋅在金屬鏡面和金屬陽極間,藉由改變硒化鋅的厚度會導致陽極的相位及反射率改變而使光譜偏移,隨著硒化鋅的厚度改變,光譜會隨之改變。藉由此特性,我們可以獲得較純的紅、綠、藍光元件。
In this thesis, we use a rigorous electromagnetic model to investigate the optical properties of top-emitting organic light-emitting device (TOLED). TOLED can be regarded as a one dimensional Fabry-Perot microcavity because the total multi-layer thickness is on the order of visible wavelength. The intensity and spectral distribution are strongly dependent on the device structure and viewing angle. We calculate the optical characteristics of TOLEDs with three different cathode materials which are ITO, silver, and silver capped with ZnSe, to optimize the output intensity at normal direction and the total output flux. The cathode consists of sliver capped with ZnSe has the maximum normal direction intensity and total flux, while the ITO case has the lowest. The normal direction optimized EL spectra are independent of the viewing angle, while the flux optimized EL have obviously blue-shift.
For better viewing angle characteristic, we first optimize the device at the normal direction, then, tune the total optical length by changing the phase caused by the anode to tune the EL spectrum. A ZnSe layer is inserted between the anode and the metal mirror to change the anode phase and reflectivity. When varying the ZnSe thickness at the anode side, the phase-shift caused by the anode and the total optical length L change. With increasing the ZnSe layer, the EL spectrums have obviously red shift, and still angle-independent. Besides, with thick ZnSe thickness, the reflectivity of anode slightly increases and result in higher output intensity. By using this methodology, pure RGB devices can be obtained.
Chapter 1 Introduction 1
1.1 Introduction of OLED 2
1.2 Review of the Development of Optical Simulation Model of OLED 2
1.3 Introduction of TOLED 4
1.3.1 Advantages of TOLED 4
1.3.2 Review of the Development of TOLED 5
1.4 Review of the Microcavity Effect for Full Color OLED 6
1.5 Motivation 10
1.6 Thesis Organization 10
References 12
Chapter 2 Analysis of a Top-Emitting OLED 26
2.1 Theory Formulation 26
2.2 Optical Model of TOLED 30
2.3 Optimization for TOLED 32
2.3.1 Opitimization for the Emission at the Normal Direction 32
2.3.2 Opitimization for the Integrated Emission 39
References 43
Chapter 3 Wavelength Selection by a Three-Cavity TOLED Structure 58
3.1 Analysis of Single-Mode Resonant Cavity 58
3.2 Design a RGB TOLED Using Microcavity Effect 63
References 67
Chapter 4 Summary 91
[1.1]C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987).
[1.2]C. F. Madigan, M. H. Lu, and J. C. Strum, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650 (2000).
[1.3]N. C. Greenham, R. H. Friend, D. D. C. Bradley, “Angular Dependence of the Emission from a Conjugated Polymer Light-Emitting Diode: Implications for efficiency calculations,” Adv. Mater. 6, 491 (1994).
[1.4]B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics,” New York: Wiley (1991).
[1.5]J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminescence emission pattern of organic light-emitting diodes: Implications for efficiency calculations,” J. Appl. Phys. 88, 1073 (2000).
[1.6]V. Bulović, V. B. Khalfin, G. Gu, and P. E. Burrows, “ Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58, 3730 (1998).
[1.7]K. Ujihara, “Quantum theory of a one-dimensional optical cavity with output coupling, Field quantization,” Phys. Rev. A 12, 148 (1975).
[1.8]Z. Meng and M. Wong, “Active-Matrix Organic Light Emitting Diode Displays Realized Using Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices 49, 991 (2002).
[1.9]Y. Kijima, N. Asai, N. Kishii, and S. Tamura, “RGB Luminescence from Passive-Matrix Organic LED’s,” IEEE Trans. Electron Devices 44, 1222 (1997).
[1.10]T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, and H. Klauk, “Organic Thin-Film Transistors for Organic Light-Emitting Flat-Panel Display Backplanes,” IEEE J. Select. Topics Quantum Electron. 4, 100 (1998).
[1.11]C. J. Lee, R. B. Pode, D. G. Moon, and J. I. Han, “Realization of an efficient top emission organic light-emitting device with novel electrodes,” Thin Solid Films 467, 201 (2004).
[1.12]S. Han, X. Feng, Z. H. Lu, D. Johnson, and R. Wood, “Transparent-cathode for top-emission organic light-emitting diodes,” Appl. Phys. Lett. 82, 2715 (2003).
[1.13]A. Dodabalapur, L. J. Rothberg, T. M. Miller, and E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486 (1994).
[1.14]G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, and S. R. Forrest, “Transparent stacked organic light emitting devices. Ⅰ. Design principles and transparent compound electrodes,” J. Appl. Phys. 86, 4067 (1999).
[1.15]P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi and T. X. Zhou, “Semitransparent cathodes for organic light emitting devices,” J. Appl. Phys. 87, 3080 (2000).
[1.16]M.H. Lu, M. S. Weaver, T. X. Zhou, M. Rothman, R. C. Kwong, M. Hack, and J. J. Brown, “High-efficiency top-emitting organic light-emitting devices,” Appl. Phys. Lett. 81, 3921 (2002).
[1.17]H. Riel, S. Karg, T. Beierlein, and W. Rieβ, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94, 5290 (2003).
[1.18]P. E. Burrows, G. Gu, V. Bulovi´c, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron Devices 44, 1188 (1997).
[1.19]P.W. Atkins and R.S. Friedman, “Molecular quantum mechanics,” New York: Oxford University Press (1997).
[1.20]C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, R. C. Kwong, “High-efficiency red electrophosphorescence devices,” Appl. Phys. Lett. 78, 1622 (2001).
[1.21]F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Improved energy transfer in electrophosphorescent devices,” Appl. Phys. Lett. 74, 442 (1999).
[1.22]C. Adachi, M. A. Baldo, and S. R. Forrest, “Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host,” J. Appl. Phys. 87, 8049 (2000).
[1.23]T. Nakayama, Y. Itoh, and A. Kakuta, “Organic photo- and electroluminescent devices with double mirrors,” Appl. Phys. Lett. 63, 594 (1993).
[1.24]S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407 (1999).
[1.25]N. Takada, T. Tsutsui, and S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032 (1993).
[1.26]J. Grüner, F. Cacialli, and R. H. Friend, “Emission enhancement in single-layer conjugated polymer microcavites,” J. Appl. Phys. 80, 207 (1996).
[1.27]A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Philips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954 (1996).
[1.28]S. Han, C. Huang, and Z.-H. Lu, “Color tunable metal-cavity organic light-emitting diodes with fullerene layer,” J. Appl. Phys. 97, 093102-1 (2005).
[2.1]K. B. Kahen, “Rigorous optical modeling of multilayer organic light-emitting diode devices,” Appl. Phys. Lett. 78, 1649 (2001).
[2.2]A. Ishimaru, “Electromagnetic Wave Propagation, Radiation, and Scattering,” London: Prentice-Hall International (1991).
[2.3]國立台灣大學電信工程學研究所碩士論文,指導教授江衍偉博士,研究生陳弘基撰,92年6月。
[2.4]P. Yeh, “Optical Waves in Layered Media” New York : Wiley, (1988).
[2.5]C. W. Tang, S. A. Vanslyke, and C. H. Chen, “ Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610 (1989).
[2.6]E. D. Palik, “Handbook of optical constants of solids,” London: Academic Press (1998).
[2.7]P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Select. Topics Quantum Electron. 8, 378 (2002).
[2.8]S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, “Interference effects in bilayer organic light-emitting diodes,” Appl. Phys. Lett. 82, 466 (2003).
[2.9]E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “High Efficient Light-Emitting Diodes with Microcavities,” Science 265, 943 (1994).
[2.10]M. H. Lu and J. C. Sturm, “Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment,” J. Appl. Phys. 91, 595 (2002).
[3.1]N. E. J. Hunt, E. F. Schubert, R. F. Kopf, D. L. Sivco, A. Y. Cho, and G. J. Zydzik, “Increased fiber communications bandwidth from a resonant cavity light emitting diode emitting at λ=940nm,” Appl. Phys. Lett. 63, 2600 (1993).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔