[1]N. Flaherty, ”Battle of the blues,” IEE Review, Vol.50, Issue 4, pp.48-50 April, 2004.
[2]D. Fluck and P. Giinter, “Tunable blue light generation by sum-frequency mixing of AlGaAs and InGaAs laser diodes in KNbO3,” Electron. Lett, Vol.32, No.10, pp.901-903, 1996.
[3]S. Shichijyo, K. Yamada, S. Takemura, Y. Oeda, A. Ohkubo, and K. Muro, “Blue and blue-green lasers by intracavity sum-frequency generation with potassium niobate,” Lasers and Electro-Optics, CLEO ''96, pp. 465-466, 1996.
[4]M. Rottschalk, J. P. Ruske, K. Hornig, S. Steinberg, G. Hagner, and A. Rasch, ”Single mode channel waveguides and electrooptic modulators in KTiOPO4 for the short visible wavelength region,” J. Lightwave Technol., vol.13, no.10, pp.2041-2048, 1995.
[5]T. F. Wiener, “The role of blue/green laser systems in strategic submarine communications,” IEEE trans. Comm., vol.28, no.9, pp.1602-1607, 1980.
[6]D. L. Begley, “Laser cross-link systems and technology,” IEEE Communication Magazine, August, pp.126-132, 2000.
[7]S. K. Renukunta and D. H. Wells, ”optical memory and blue lasers,” IEEE Potentials, Vol.13,Issue 4, pp.14-18, 1994.
[8]D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. Laybourn, and D. L. Rue, “Characteristic of proton exchanges slab waveguide on Z-cut LiNbO3,” J. Appl. Phys., vol.40, pp.6218-6220, 1983.
[9]J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys., vol.49, no.6, pp.3150-3154, 1978.
[10]魏培坤, “金屬擴散式鈮酸鋰光波導之製造與應用,” 國立台灣大學電機工程學研究所博士論文, 1994.[11]W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO: lithium niobate,” J. Lightwave Technol., vol.10, no.9, pp.1238-1246, 1992.
[12]W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO: LiNbO3,” Opt. Lett., vol.16, no.13, pp.995-997, 1991.
[13]B. Herrerros and G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from vapor phase,” Appl. Phys. Lett., vol.66, no.20, pp.1449-1451, 1995.
[14]R. Nevado and G. Lifante, “Characterization of index profiles of Zn-diffused LiNbO3 waveguides,” J. Opt. Soc. Am. A, vol.16, no.10, pp.2574-2580, 1999.
[15]F. Abdi, M. Aillerie, M. Fontana, P. Boursom, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wohlecke, “Influence of Zn doping on electrooptical properties and structure of lithium niobate crystals,” Appl. Phys. B, vol.68, pp.795-799, 1999.
[16]F. Schiller, B. Herrerros and G. Lifante, “Optical characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Opt. Soc. Am. A, vol.14, no.2, pp.425-429, 1997.
[17]涂瑞清, ”長波長鋅擴散式鈮酸鋰光波導元件之研製,” 國立台灣大學電機工程學研究所博士論文, 2000.[18]廖裕評, “金屬擴散式極化分離器之研製,” 國立台灣大學電機工程學研究所博士論文, 1996.[19]楊志華, “鋅鎳同步擴散式鈮酸鋰光波導之研製,” 國立台灣大學電機工程學研究所碩士論文, 1996.[20]李峻霣, “鋅鎳擴散式鈮酸鋰光極化分離器之研製,” 國立台灣大學光電工程學研究所碩士論文, 2000.[21]徐文浩, “鋅鎳擴散式鈮酸鋰光波導在可調式極化分離器之應用,” 國立台灣大學光電工程學研究所碩士論文, 2001.[22]A. M. Glass, “The photorefractive effect,” Opt. Eng., vol.17, no.5, pp.470-479, 1978.
[23]G. T. Harvey, “The photorefractive effect in directional coupler and Mach-Zehnder LiNbO3 optical modulators at a wavelength of 1.3µm,” J. Lightwave Technol., vol.6, no.6, pp.872-876, June 1988.
[24]R. A. Becker and R. C. Williamson, “Photorefractive effects in LiNbO3 channel waveguides: model and experimental verification,” Appl. Phys. Lett., vol.47, no.10, pp.1024-1026, 1985.
[25]李牧家, “鈮酸鋰藍光波導元件之研製,” 國立台灣大學光電工程學研究所碩士論文,2004.[26]W. E. Martin, “A new waveguide switch/modulator for integrated optics,” Appl. Phys. Lett., vol.26, no.10, pp.562-564, 1975.
[27]R. G. Hunsperger, “Integrated optics: theory and technology” 5th Edition, Springer-Verlag, 2002.
[28]張世軍, “鈮酸鋰電光調變器之改良研究,” 國立台灣大學電機工程學研究所博士論文, 1999.[29]H. A. Haus, “Waves and fields in optoelectronics.” Prentice-Hall, 1985.
[30]R. Ramaswami and K. N. Sivarajan, “Optical networks: a practical perspective,” Morgan Kaufmann, 1997.