跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂建嶢
研究生(外文):Chien-Yao Lu
論文名稱:氮化鎵微型共振腔的製作與特性分析
論文名稱(外文):Fabrication and characterization of Gallium Nitride microcavities
指導教授:彭隆瀚
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:34
中文關鍵詞:氮化鎵微型共振腔
外文關鍵詞:Gallium Nitridemicrocavity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,氮化鎵材料已經引起各界廣泛的注意,尤其是在藍紫外光發光元件上的潛力。由於傳統乾式蝕刻所造成的種種材料上的破壞,我們需要尋找另一種能夠有效的提高元件效率及壽命的新製程方式。本論文討論了濕式蝕刻在氮化鎵材料上的製程應用。光致蝕刻反應在本文中有詳細的特性討論及可能應用的方向。另外,蝕刻的晶格特性也一併的在本文中被探討。分散式布拉格反射鏡雷射二極體亦成功的由濕式蝕刻的方式製作出來。不同形狀及大小的氮化鎵微型共振腔使用同樣的濕式蝕刻方式也成功的被製作出來。所有元件的光學特性分析一併再論文中有詳細的描述,詳細的理論在論文中亦有提及。最後,可能的應用及發展在最後一章有概略的介紹以及本篇論文的結論。
In the last decades, gallium nitride materials have drawn much attention and have great potential for the UV-Blue light emitting devices. Due to the disadvantages such as material damages in dry etch, new fabrication processes are needed to enhance the efficiency and lifetime of light emitting devices. This thesis explores the use of wet chemical etching technique as processing tool for GaN – based semiconductors. The general properties of the photo-enhanced chemical (PEC) reaction have been inspected and described in detail for application purpose. Crystallographic etching properties were presented and provided a useful route to different kinds of application. The blue laser diode with distributed Bragg reflectors (DBR) was successfully obtained by the PEC method. In addition, this technique has been used to fabricate GaN microcavities of different geometry and sizes according the crystal nature of GaN. All the fabricated devices were analyzed with optically pumped experiment apparatus. Theoretical investigation of these devices have been proposed and demonstrated in the same thesis. The general conclusions and possible applications in the future were discussed in the last chapter of this work.
CONTENTS

Chapter 1 Introduction 1
1.1 Recent development of ultraviolet-blue laser diodes. 1
1.2 The application and advantages of microcavity in laser diodes. 1
1.3 Overview of this thesis 2
Chapter 2 Crystallographic properties of photo-enhanced chemical oxidation and etching 3
2.1 Photo-enhanced chemical oxidation (etching) method 3
2.2 Photo-enhanced chemical wet oxidation characteristics of GaN 4
2.3 Wet chemical crystallographic etching of GaN 6
2.4 Summary 9
Chapter 3 Principle and fabrication of the Distributed Bragg Reflector (DBR) laser diodes 10
3.1 Basic idea of Distributed Bragg Reflector (DBR) laser diode 10
3.2 Fabrication process of DBR laser diode 15
Chapter 4 Principle and fabrication process of the GaN microcavities 16
4.1 Basic idea of microcavity for laser application 16
4.2 Fabrication process of GaN microcavity 21
4.3 Summary 22
Chapter 5 Measurement and spectrum analysis 23
5.1 Optical measurement setup 23
5.2 Spectrum analysis of DBR laser diodes. 24
5.3 Spectrum analysis of DBR laser diodes. 25
5.4 Summary 27
Chapter 6 Conclusion and Future work 28
6.1 Summary and conclusion of thesis work 28
6.2 Future work 28
S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd edition (2000).
M. E. Lin, Z. F. Fan, L. H. Allen, and H. Morkoc, Appl. Phys. Lett., 64, 807 (1994).
C. R. Eddy, Jr. and B. Molnar, J. Electron. Mater. 28, 314 (1999)
T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, Science, 285 1905 (1999).
L. H. Peng, C. H. Liao, and Y. C. Hsu, Appl. Phys. Lett., 76, 511 (2000)
M. S. Minsky, M. White, and E. L. Hu, Appl. Phys. Lett., 68, 1531 (1996)
I. M. Huygens, K. Strubbe, and W. P. Gomes, J.Electro. Soc. 147, 1797 (2000)
D. A. Stocker, and E. F. Schubert, Appl. Phys. Lett., 73, 2654 (1998)
T. Saitoh, M. Kumagai, H. Wang, T. Tawara, T. Nishida, Appl. Phys. Lett., 82, 4426 (2003)
H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, Appl. Phys. Lett., 74, 1036 (1999)
R. Jambunathan, and J.Singh, IEEE J. Quantum. Electron., 33, 1180 (1997)
H. Wang, T. Tawara, M. Kumagai, T. Saitoh, N. Kobayashi, Jpn. J. Appl. Phys., 41, L682 (2002)
S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, R. A. Logan, Appl. Phys. Lett., 60, 289 (1992)
T. BaBa, IEEE J. Selected Topic Quantum. Electron., 3, 808 (1997)
I. Vurgaftman and J. Singh, Appl. Phys. Lett., 64, 1472 (1994)
T. Akasaka, Y. Kobayashi, S. Ando, N. Kobayashi, Appl. Phys. Lett., 71, 2196 (1997)
J. Wiersig, Phys. Rev. A, 67, 023807 (2003)
Optical Process in Microcavities,ed. By R. K. Chang and A.J. Campollo,(World Sceintific, 1996)
R. F. Harrington, Time Harmonic Electromagnetic Fields, (McGraw-Hill, Inc, 1985)
I. Braun, G. Ihlein, F.Laeri, Appl. Phys. B, 70, 335 (2000)
T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Phys. Rev. Lett., 93, 103903 (2004)
S. Ando, N. Kobayashi, H. Ando, Jpn. J. Appl. Phys., 34, L4 (1995)
L. H. Peng, C. M. Lai, C. W. Shih, C. C. Chuo, and J. I. Chyi, IEEE J. Selected Topic Quantum. Electron., 9, 1077 (2003)
S.Chang, N. B. Rex, R. K. Chang, G. Chong, and L. J. Guido, Appl. Phys. Lett., 75, 166 (1999)
M. Ariga, Y. Sekido, A. Sakai, T. Baba, A. Matsutani, F. Koyama and K. Iga, Jpn. J. Appl. Phys., 36, 3046 (2000)
T. Akasaka, T. Nishida, T. Makimoto and N. Kobayashi, Appl. Phys. Lett., 84, 4104 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top