|
[1] Abeeluck, A. K., N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express, vol. 10, pp. 1320-1333, 2002. [2] Barkou, S. E., J. Broeng, and A. Bjarklev, "Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect," Opt. Lett., vol. 24, pp. 46-48, 1999. [3] Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys., vol. 114, pp. 185-200, 1994. [4] Benabid, F., J. C. Knight, G. Antonopoulos, and P. St. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science, vol. 298, pp. 399-402, 2002. [5] Benistry, H., "Modal analysis of optical guides with two-dimensional photonic band-gap boundries," J. Appl. Phys., vol. 79, pp. 7483-7492, 1996. [6] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. [7] Brechet, F., J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method," Opt. Fiber Technol., vol. 6, pp. 181-191, 2000. [8] Chew, W. C., and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell''s equations with stretched coordinates," Microwave Opt. Tech. Lett., vol. 12, pp. 599-604, 1994. [9] Chen, H. J., Hybrid-elements FEM based complex mode solver for optical waveguides with triangular-mesh generator. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [10] Cregan, R. F., B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science, vol. 285, pp. 1537-1539, 1999. [11] Ferrando, A., E. Silvestre, J. J. Miret, P. Andres, and M. V. Andres, "Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett., vol. 24, pp. 276-278, 1999. [12] Hesthaven, J. S., and D. Gottlieb, "A stable penalty method for the compressible Navier-Stokes equations. II. One dimensional domain decomposition schemes," SIAM J. Sci. Comput., vol. 18, pp. 658-685, 1997. [13] Hsu, S. M., Full-vectorial finite element beam propagation method based on curvilinear hybrid edge/nodal elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [14] Koshiba, M., and K. Saitoh, "Numerical verification of degeneracy in hexagonal photonic crystal fibers," IEEE Photon. Technol. Lett., vol. 13, pp. 1313-1315, 2001. [15] Koshiba, M., and Y. Tsuji, "Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems," J. Lightwave Technol., vol. 18, pp. 737-743, 2000. [16] Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett., vol. 21, pp. 1547-1549, 1996. [17] Kuhlmey, B. T., T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical bers. II. Implementation and results," J. Opt. Soc. Am. B, vol. 19, pp. 2331-2340, 2002. [18] Litchinitser, N. M., A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett., vol. 27, pp. 1592-1594, 2002. [19] Litchinitser, N. M., and S. C. Dunn, "Application of an ARROW model for designing tunable photonic devices," Opt. Express, vol. 12, pp. 1540-1550, 2004. [20] Lee, J. F., Finite element method with curvilinear hybrid edge/nodal triangular-shape elements for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. [21] Obayya, S. S. A., B. M. Azizur Rahman, T. V. Grattan, and H. A. El-Mikati, "Full vectorial nite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides," J. Lightwave Technol., vol. 20, pp. 1054-1060, 2002. [22] Ouzouno, D. G., F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solutions in hollow-core photonic bandgap fiber," Science, vol. 301, pp. 1702-1704, 2003. [23] Qiu, M., "Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microwave Opt. Technol. Lett., vol. 30, pp. 327-330, 2001. [24] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995. [25] Saitoh, K., and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol., vol. 19, pp. 405-413, 2001. [26] Saitoh, K., and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron., vol. 38, pp. 927-933, 2002. [27] Saitoh, K., and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap bers," Opt. Express, vol. 11, pp. 3100-3109, 2003. [28] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, "Mixed finite element beam propagation method," J. Lightwave Technol., vol. 16, pp. 1336-1341, 1998. [29] Snyder, A. W., and J. D. Love, Optical waveguide theory. New York: Chapman and Hall, 1983. [30] Selleri, S., L. Vincetti, and M. Zoboli, "Full-vector finite-element beam propagation method for anisotropic optical device analysis," IEEE J. Quantum Electron., vol. 36, pp. 1392-1401, 2000. [31] Toyama, H., K. Yasumoto, and H. Jia, "Electromagnetic scattering and guidance by two-dimensinal photonic bandgap structures," in XXIIth General Assembly of the International Union of Radio Science Proceedings (CD-ROM), paper DB.P.2, Maastricht, the Netherlands, August 17-24, 2002. [32] Tsuji, Y., and M. Koshiba, "Guided-mode and leaky-mode analysis by imaginary distance beam propagation method based on finite element scheme," J. Lightwave Technol., vol. 18, pp. 618-623, 2000. [33] Weat, J. A., N. Venkataraman, C. M. Smith, and M. T. Gallagher, "Photonic crystal fibers," in Proc. European Conf. Opt. Commun., paper Th.A.2.2 2001. [34] White, T. P., R. C. McPhedran, and C. Martijn de Sterke, "Resonance and scattering in microstructured optical fibers," Opt. Lett., vol. 27, pp. 1977-1979, 2002. [35] White, T. P., B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, L. C. Botten, "Multipole method for microstructured optical bers. I. Formulation," J. Opt. Soc. Am. B, vol. 19, pp. 2322-2330, 2002. [36] Yu, C. P., Improved finite-difference frequency-domain method for modal analysis of optical waveguides and photonic crystal devices. Ph.D. Dissertation, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [37] Yu, C. P., and H. C. Chang, "Applications of the Finite Difference Mode Solution Method to Photonic Crystal Structures," Opt. Quantum Electron., vol. 36, pp. 145-163, 2004. [38] Zhang, L., and C. Yang, "Polarization-dependent coupling in twin-core photonic crystal fibers," J. Lightwave Technol., vol. 22, pp. 1367-1373, 2004.
|