(3.238.88.35) 您好!臺灣時間:2021/04/10 20:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周允賢
研究生(外文):Yun-Hsien Chou
論文名稱:有限元素時域波束傳播法之發展與應用
論文名稱(外文):Development and Applications of Finite-Element Time-Domain Beam Propagation Method
指導教授:張宏鈞
指導教授(外文):Hung-Chun Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:78
中文關鍵詞:有限元素法光波導分析時域分析時域波束傳播法
外文關鍵詞:finite-element method (FEM)optical waveguide analysistime-domain analysistime-domain beam propagation method (TD-BPM)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統上,波束傳播法假設只具有前向傳播的波,若遇到結構上會產生反射波的情形便不適用。在本研究中,我們考慮有限元素時域波束傳播法(FETD-BPM)以處理在波導結構上會產生反射的情形,應用於橫向電場模態及橫向磁場模態。另外,我們引進了一完美匹配層(PML)作為邊界條件來吸收超出數值空間之電磁波。我們的演算法分別採用了近軸近似或帕帝(Padé)近似來處理窄頻或寬頻的脈衝光波問題。
為了驗證此方法的正確性,我們分析了簡單的平面光波導及光柵這兩個結構。接著,我們將有限元素時域波束傳播法應用到幾種不同的波導結構,如彎曲型波導和環型和碟型共振器,數值計算顯示,帕帝(Padé)近似在計算短如只有數飛秒的脈衝波仍具有優異的表現。
此外,我們亦以此方法分析了數個曾於文獻中被討論的二維高折射率對比直角轉彎波導元件的TE模態傳播特性。所分析的元件結構包括簡單的直角轉彎波導、直角轉彎波導加入方形共振腔結構、直角轉彎波導於轉折處外側切45°截面、直角轉彎波導於轉折處加入四分之一圓結構。所研究的波導具0.2微米的寬度,其傳播層折射率為3.2而覆蓋層折射率為1.0,分析的波長範圍由1.48微米至1.62微米。藉著在波導的轉折處加入某些共振腔結構,其透射效能可以顯著地提升。研究結果亦顯示對於含有曲線形或斜線形介電接面的結構而言,如直角轉彎波導於轉折處外側切45°截面及直角轉彎波導於轉折處加入四分之一圓結構,此方法分析所得之數值結果與以有限差分時域法分析所得的結果略有不同。
Traditionally, the beam propagation method (BPM) assumes only the forward propagating waves exist. It is difficult to take into account backward reflecting waves in the BPM. In this research, a time-domain beam propagation method (BPM) based on the finite-element scheme is described for the analysis of non-forward-propagating pulses of both transverse-electric and transverse-magnetic modes in waveguiding structures containing arbitrarily shaped discontinuities. In order to avoid nonphysical reflections from the computational window edges, the perfectly matched layer boundary condition is employed. The present algorithms use two kinds of approximations, the paraxial approximation and the Pade approximation, which can treat the narrow-band and the wide-band optical pulses, respectively. After validating this method for a simple slab waveguide and an optical grating with modulated refractive indexes, various optical waveguide structures, such as the bent waveguides, and the microcavity ring and disk resonators are simulated. The calculated results show that the Pade approximation can successful simulate a short pulse with only several femtoseconds. Besides, the method is employed to study several two-dimensional high-index-contrast 90-degree waveguide bend structures previously reported in the literature regarding their TE mode propagation characteristics. The device structures considered include the simple 90-degree-bend waveguide, the 90-degree-bend waveguide modified by a square resonator, the 90-degree-bend waveguide with a 45-degree-cut at its outer corner, and the 90-degree-bend waveguide modified by a quarter disk. The waveguide structure is assumed to have the core width of 0.2μm, the core index of 3.2, and the cladding index of 1.0, and the wavelength range is from 1.48μm to 1.62μm. By adding some resonator structure at the waveguide bend, the transmittance performance can be significantly improved. We also show that there are some differences in the numerical results compared with those calculated by using the finite-difference time-domain method for the 90-degree-bend waveguide with a 45-degree-cut at its outer corner and the 90-degree-bend waveguide modified by a quarter disk which have the curved/oblique shaped dielectric interfaces.
1 Introduction 1
1.1 Motivations ........................................ 1
1.2 Chapter Outline .................................... 4
2 Mathematical Formulations 6
2.1 Introduction to Perfectly Matched Layers ........... 6
2.2 Basic Equations of Finite Element Discretization ... 9
2.3 Narrow-Band and Wide-Band Approaches .............. 12
2.3.1 The Narrow-Band Approach ........................ 12
2.3.2 The Wide-Band Approach .......................... 14
3 Numerical Results and Applications of the FETD-BPM 24
3.1 Validation of Numerical Schemes ................... 24
3.1.1 The Slab Waveguide .............................. 24
3.1.2 The Optical Grating ............................. 25
3.2 Some Applications of the FETD-BPM ................. 27
3.2.1 The Bent Waveguides ............................. 27
3.2.2 The Microcavity Ring and Disk Resonators ........ 28
4 Simulation of High-Index-Contrast 90-Degree Waveguide Bend Structures 50
4.1 Simple 90-Degree-Bend Waveguide ................... 52
4.2 90-Degree-Bend Waveguide Modified by a Square Resonator
Inside the Corner ..................................... 53
4.3 90-Degree-Bend Waveguide Modified by a Square Resonator
with a 45-Degree-Cut at Its Outer Corner .............. 55
4.4 90-Degree-Bend Waveguide Modified by a Quarter-Disk Resonator ............................................. 56
5 Conclusion 70
[1] Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, pp. 185-200, 1994.
[2] Chu, S.-T., and S. Chaudhuri, "A finite-difference time-domian method for the design and analysis of guided wave optical structures," J. Lightwave Technol., vol.77, pp. 3787-3790, 1989.
[3] Chung, Y., and N. Dagli, "Explicit finite difference beam propagation method: applications to semiconductor rib waveguide Y-junction analysis," Electron. Lett., vol. 26, pp. 711-713, 1990.
[4] Feit, M. D., and J. A. Fleck, Jr., "Light propagation in graded-index optical fibers," Appl. Opt., vol. 17, pp. 3990-3998, 1978.
[5] Gerdes, J., and R. Pregla, "Beam-propagation algorithm based on the method of lines," J. Opt. Soc. Amer. B, vol. 8, pp. 389-394, 1991.
[6] Hadley, G. R., "Wide-angle beam propagation using Pade approximant operators," Opt. Lett., vol. 17, pp. 1426-1428, 1992.
[7] Hadley, G. R., "Transparent boundary condition for the beam propagation method," IEEE J. Quantum Electron., vol. 28, pp. 363-370, 1992.
[8] Hadley, G. R., "Multistep method for wide-angle beam propagation," Opt. Lett., vol. 17, pp. 1743-1745, 1992.
[9] Hagness, S. C., D. Rafizadeh, S. T. Ho, and A. Tafl ove, "FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,"
J. Lightwave Technol., vol. 15, pp. 2154-2165, 1997.
[10] Haus, H. A., Waves and Fields in Optoelectronics. Englewood Cliffs: Prentice-Hall, 1984.
[11] Hirayama, K., M. Koshiba, and M. Suzuki, "Finite element analysis of dielectric slab waveguide with finite periodic corrugation," Trans. Inst. Electron. Inform. Commun. Eng., vol. J69, pp. 724-730, 1986.
[12] Hong, C. T., Finite-difference time-domain analysis of high-density integrated optic guided-wave devices. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan,
June 2003.
[13] Huang, W. P., and C. L. Xu, "A wide-angle vector beam propagation method," IEEE Photon. Technol. Lett., vol. 4, pp. 1118-1120, 1992.
[14] Jin, G. H., J. Harari, J. P. Volcot, and D. Decoster, "An improved time-domian beam propagation method for integrated optics components," IEEE Photon. Technol. Lett., vol. 9, pp. 348-350, 1997.
[15] Korotky, S. K., E. A. J. Marcatili, J. J. Veselka, and R. H. Bosworth, "Greatly reduced losses for small-radius bends in Ti:LiNbO3 waveguides," Appl. Phys. Lett., vol. 8, pp. 92-94, 1985.
[16] Koshiba, M., Optical Waveguide Theory by the Finite Element Method, Tokyo/Dordrecht: KTK Scientific/Kluwer, 1992.
[17] Koshiba, M., and Y. Tsuji, "A wide-angle finite element beam propagation method," IEEE Photon. Technol. Lett., vol. 8, pp. 1208-1210, 1996.
[18] Koshiba, M., Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," J. Lightwave Technol., vol. 18, pp. 102-110, 2000.
[19] Koshiba, M., Y. Tsuji, and S. Sasaki, "High- performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wireless Compon. Lett., vol. 11, pp. 152-154, 2001.
[20] Lin, H. B., J. Y. Su, P. K.Wei, and W. S.Wang, "Design and application of very low-loss abrupt bends in optical waveguides," IEEE J. Quantum Electron., vol. 30, pp. 2827-2835, 1994.
[21] Liu, P.-L, Q. Zhao, and F.-S. Choa, "Slow-wave finite-difference beam propagation method." IEEE Photon. Technol. Lett., vol. 7, pp.890-892, 1995.
[22] Manolatou, C., S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol., vol. 17, pp. 1682-1692, 1999.
[23] Marcatili, E. A. J., "Bends in optical dielectric guides," Bell System Technical J., vol. 48, pp. 2103-2132, 1969.
[24] Naydenkov, M. and B. Jalali, "Advances in silicon-on-insulator photonic integrated circuit (SOIPIC) technology," in IEEE International SOI Conference, (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1999), pp. 56-66.
[25] Nishihara, H., M. Haruna, and T. Suhara, Optical Integrated Circuits, New York: McGraw Hill, 1989.
[26] Obayya, S.S.A., "Efficient finite-element-based time-domain beam propagation analysis of optical integrated circuits," IEEE J. Quantum Electronics, vol. 40, pp. 591-595, 2004.
[27] Oda, K., N. Takato, and H. Toda, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol., vol.9, pp.728-736, 1991.
[28] Radcliffe, S. N., and T. P. Young, "New low-loss bend structures for high-density integrated optical switch arrays," IEEE J. Select. Area. Commun., vol. 6, pp. 1169-1177, 1988.
[29] Rodriguez-Esquerre, V. F., and H. E. Hernandez-Figueroa, "Novel time-domain step-by-step scheme for integrated optical applications," IEEE Photon. Technol. Lett., vol. 13, pp. 311-313, 2001.
[30] Saitoh, K., and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol., vol. 19, pp. 405-413, 2001.
[31] Teixeira, F. L., and W. C. Chew, "General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media," IEEE Microwave Guided Wave Lett., vol. 8, pp. 223-225, 1998.
[32] Tsuji, Y., and M. Koshiba, "A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides," J. Lightwave Technol., vol. 14, pp. 217-222, 1996.
[33] Tsuji, Y., M. Koshiba, and T. Tanabe, "A wide-angle beam propagation method based on a finite element scheme," IEEE Trans. Magnet., vol. 33, pp. 1544-1547, 1997.
[34] Wu, J.-Y., D. M. Kingsland, J.-F. Lee, and R. Lee, "A comparison of anisotropic PML to Berenger''s PML and its application to the finite-element method for EM scattering," IEEE Trans. Antennas Propagat., vol. 45, pp. 40-50, 1999.
[35] Yamauchi, J., M. Mita, S Aoki, and H. Nakano, "Analysis of antireflection coatings using the FD-TD method with the PML absorbing boundary condition," IEEE Photon. Technol. Lett., vol. 8, pp. 239-241, 1996.
[36] Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell''s equations," IEEE Trans. Antennas Propag., vol. AP-14, pp. 302-307, 1966.
[37] Yevick, D., and B. Hermansson, "Efficient beam propagation techniques," IEEE Quantum Electron., vol. 26, pp. 109-112, 1990.
[38] Zienkiewitz, O. C., The Finite Element Method, 3rd ed. London: McGraw-Hill, 1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔