跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠瑋
研究生(外文):Guan-Wei Lin
論文名稱:陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對關係
論文名稱(外文):The relationships between sediment discharge and landslide-induced by typhoon and earthquake along the Chenyoulan River
指導教授:陳宏宇陳宏宇引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:130
中文關鍵詞:陳有蘭溪山崩輸砂量
外文關鍵詞:The Chenyoulan Riverlandslidesediment discharge
相關次數:
  • 被引用被引用:21
  • 點閱點閱:581
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
摘要

從陳有蘭溪流域在1996年賀伯颱風、1999年921地震、2001年桃芝颱風及2004年敏督利颱風等四個事件所進行之研究中發現,921地震後的五年內,山崩新生率上升至70%,山崩重現率下降至40%,四個事件之山崩面積機率迴歸指數均大於1.5,此意義顯示山崩類型主要為小於2000 m2之小規模山崩。從山崩最低點的機率分布也可以發現,921地震後仍有超過90%的崩塌材料堆積在山坡上。
從河流輸砂量的統計結果發現,921地震後陳有蘭溪之平均年輸砂量達37百萬噸,較地震前增加13倍,單位懸浮沉積物濃度較地震前增加4 倍以上,而桃芝及敏督利颱風期間,單位流量中之輸砂量也超過賀伯颱風的1.5倍,此意義顯示,地震後本研究區內的輸砂特性有了變化,不但平均年輸砂量上升,且在相同流量條件下,地震後之輸砂量會較地震前高。
就山崩與岩石強度之對應關係中可瞭解,921地震後南莊層之崩塌率為地震前的17倍,和社層為3.4倍,變質岩層為4.8倍,其中以南莊層崩塌率的上升幅度最大,此原因可能是南莊層之岩石平均強度不到和社層及變質岩層的2/3使然。而南莊層及和社層在921地震後之山崩重現率下降25%,變質岩層僅下降6%,此結果可能與變質岩層之不連續面的分布比例為南莊層及和社層的2倍有密切關係。
從崩塌面積的分布與車籠埔斷層距離的關係中可以發現,921地震的山崩與斷層距離超過20km後,崩塌率有明顯下降的趨勢,在桃芝颱風的山崩分布中亦可看到此現象,而敏督利颱風時,此現象已不明顯。從降雨量與山崩率的比對中可以發現,賀伯颱風時,降雨量越大的集水區,崩塌率就越高,其相關係數達0.99,但降雨量與桃芝颱風及敏督利颱風的山崩卻無此明顯的關係,此現象可以說明賀伯颱風的崩塌主要是受到降雨多寡的影響,而桃芝及敏督利颱風除了降雨量的關係外,還包括了921地震的影響。
Abstract

Examining the effects of four events -- typhoon Herb, 921-earthquake, typhoon Toraji and typhoon Mindulle -- along the catchments of Chenyoulan River, we found that newborn landslide rate increased to 70%, while the reactive landslide rate decreased to 40%. Regression exponent results show that the landslides associated with these four events were all greater than 1.5, indicating that the landslides in Chenyoulan watershed are dominated by small landslides, which tend to be less than 2000m2. Probability distribution in the upslope area at the lower most point reached by landslides shows that 90% of the landslides remained confined to hillslopes after 921-earthquake. In addition, the post-earthquake average sediment discharge was 37 Mt/yr, some 13 times the pre-earthquake amount. The post seismic unit sediment concentration also increased by 4 times in the Chenyoulan River.
The post-earthquake landslide rate for Nanchuang formation increased 17times. In contrast, the landslide rate for Hoshe formation only increased 3.4 times, and the metamorphic formation only increased 4.8 times. These results reveal that the rock strength of Nanchuang formation was smaller than that of Hoshe formation and metamorphic formation. The post-earthquake reactive landslide rate for Nanchuang formation and Hoshe formation decreased to 25%, but at the same time the metamorphic formation decreased only 6%. The controlling factor came from the discontinuities distribution, because the joints sets for Nanchuang formation and Hoshe formation were only 2/3 of the metamorphic formation.
Analysis of the correlation between landslide distribution and distance from the Chelungpu fault revealed that the 921 co-seismic landslide rates decayed more rapidly after 20 km; landslide effects of typhoon Toraji indicated similar results. The relation between accumulated rainfall and landslide rate display that during typhoon Herb the landslide rate increased with the accumulated rainfall, and the correlation coefficient reached 0.99. But during typhoon Toraji and Mindulle the landslide rate didn’t have good relation with the accumulated rainfall, the landslides during typhoon Toraji and Mindulle maybe affected by 921 earthquake.
目錄

致謝 …………………………………………………….... Ⅰ
中文摘要 ……………………………………………………... Ⅱ
英文摘要 ……………………………………………………... Ⅲ
目錄 ……………………………………………………... Ⅴ
圖目錄 ……………………………………………………... Ⅷ
表目錄 ……………………………………………………... Ⅹ

第一章 緒論………………………………………………... 1
1.1 前言………………………………………………... 1
1.2 研究動機與目的…………………………………... 2
1.3 地理位置及交通狀況……………………………... 3

第二章 文獻回顧……………………………....................... 5
2.1 地質條件與山崩及土石流的關係………………... 5
2.2 降雨與地震對山崩及土石流的影響……………... 7
2.3 山崩機率的分布……………………………........... 8
2.4 侵蝕率的變化……………………………………... 9
2.5 地表起伏與侵蝕作用……………………………... 13

第三章 研究區域概況……………………………………… 15
3.1 地質概況……………………………………............ 15
3.2 氣候及水文………………………………………… 19
3.3 地質災害事件……………………………………... 22

第四章 研究方法…………………………………………... 25
4.1 野外調查…………………………………………... 25
4.2 室內實驗室試驗…………………………………... 26
4.3 地理資訊系統分析………………………………... 30
4.4 輸砂量計算………………………………………... 32

第五章 研究方法結果……………………………………… 37
5.1 自然物理性質試驗結果………………………….... 37
5.2 傳波速度試驗結果………………………………... 41
5.3 抗壓強度試驗結果……………………………….... 42
5.4 抗張強度試驗結果………………………………... 45
5.5 崩塌地數化及統計結果…………………………... 46
5.6 輸砂量計算結果…………………………………... 47
5.7 水文分析結果……………………………………... 52
5.8 地形分析結果……………………………………... 53

第六章 山崩及輸砂量特性………………………………... 57
6.1 山崩面積機率分佈………………………………... 57
6.2 山崩最高點及最低點的機率分佈………………… 59
6.3 山崩坡度的機率分佈……………………………… 63
6.4 山崩的新生率及重現率…………………………... 64
6.5 地震前後輸砂量的變化…………………………... 67
6.6 懸浮輸砂量與河床載的關係……………………... 70
6.7 乾季與濕季之差別………………………………... 71
6.8 輸砂量統計法之比較……………………………… 73

第七章 影響山崩及輸砂量之因子………………………… 77
7.1 岩石強度與山崩的關係…………………………... 77
7.2 不連續面分布狀況與山崩的關係………………… 78
7.3 斷層距離與山崩的關係…………………………... 81
7.4 地形及水文因子與山崩的關係…………………... 82
7.5 降雨與山崩及輸砂量的關係……………………… 86
第八章 結論……………………………………………….... 91

參考文獻 …………………………………………………….... 93
附錄一 暴雨事件的雨量、流量及輸砂量………………….. 103
附錄二 單位體積節理數的估計法………………………… 106
附錄三 施密特錘試驗換算單壓強度圖…………………… 107
附錄四 自然物理性質試驗方法…………………………… 108
附錄五 點荷重試驗方法…………………………………… 110
附錄六 輸砂量估算公式…………………………................ 112
附錄七 平均年輸砂量估計結果…………………………… 113
附錄八 本研究區之坡度分布……........................................ 115
附錄九 1985至2004年颱風事件之降雨量及輸砂量……... 116
附錄十 自然物理性質試驗紀錄…………………………… 117
附錄十一 各項抗壓試驗結果………………………………… 119
附錄十二 野外露頭不連續面調查結果……………………… 122
附錄十三 輸砂量與流量的關係……………………………… 125
附錄十四 颱風及地震誘發之山崩分布……………………… 128
附錄十五 敏督利颱風期間愛玉子溪土石流監測系統資料… 129
參考文獻
中文部份
中央氣象局 (1972-2003) 氣候資料年報,行政院交通部中央氣象局。
打荻珠男 (1971) チシ雨ズプペ山腹崩壞ズベゆサ,新砂防,79。
交通部公路總局(2004) 交通部公路總局全部災情報告850731-040707。
何智武、黃宏斌 (1983) 台灣上游湍流河道之輸砂模式研究,中華水土保持學報,14,95-106。
何智武 (1984) 台灣河川上游集水區之泥砂來源與控制,中華水土保持學報,15,15-25。
李錫堤 (1996) 從地形學的觀點看陳有蘭溪的賀伯風災,地工技術,第57期,17-24。
林慶偉 (1996) 南投縣和社地區崩塌地發育之地質影響因子,地工技術,第57期,5-16。
林昭遠、張力仁 (2000) 地文因子對土石流發生影響之研究-以陳有蘭溪為例,中華水土保持學報,31(3),227-237。
林世榮 (2001) 南投縣出水溪土石流之工程地質特性研究,國立台灣大學地質科學研究所碩士論文,136頁。
林昭遠、蔡真珍、林文賜 (2001) 集水區水系門檻值界定之研究,中華水土保持學報,32(2),133-140。
林孟龍、林俊全 (2003) 颱風對於蘭陽溪上游集水區懸移質生產特性的影響,地理學報,第33期,39-53。
吳建民 (1978) 台灣地區河川輸砂量之推估公式,集水區及河川經營研究研討會論文集,184-198。
陳時祖 (1996) 雨量與邊坡崩塌的關係,地工技術,第57期,75-80。
陳彥傑 (2003) 台灣山脈的構造地形指標特性-以面積高度積分、地形碎形參數與河流坡降指標為依據,國立成功大學地球科學系碩士論文,129頁。

張寶堂 (1984) 南投東埔溫泉區地質,經濟部地質調查所特刊,第三號,91-102。
張郇生 (1984) 台灣嘉義-玉山-玉里公路沿線之地質,經濟部中央地質調查所特刊,第三號,75-89。
張瑞津,沈淑敏,劉盈劭 (2001) 陳有蘭溪四個小流域崩塌與土石流發生頻率之研究,國立台灣師範大學地理學系「地理研究報告」,第三十四期,63-83。
張韻嫻 (2002) 台灣地區流域面積高度積分之研究,國立高雄師範大學地理學系碩士論文,139頁。
張子瑩、徐美玲 (2004) 暴雨與地震觸發崩塌發生區位之比較以陳有蘭溪流域為例,地理學報,第35期,1-16。
黃朝恩 (1980) 台灣島諸流域特徵及其相關性的研究,私立中國文化大學地理研究所博士論文,136頁。
萬鑫森、黃俊義 (1981) 台灣西北部土壤沖蝕性及流失量之估算,中華水土保持學報,12(1),57-67。
黃俊德 (1988) 台灣降雨沖蝕指數之研究,中華水土保持學報,10(1),127-143。
經濟部水利署 (1972-2003) 台灣水文年報總冊,行政院經濟部水利署。
經濟部水利處 (2001) 濁水溪支流陳有蘭溪治理規劃報告。
經濟部水利署第四河川局 (2004) 陳有蘭溪(上游段)治理規劃檢討報告。
廖軒吾 (2000) 集集地震誘發之山崩,國立中央大學地球物理研究所碩士論文,90頁。
劉守恆 (2002) 衛星影像於崩塌地自動分類組合之研究,國立成功大學地球科學系碩士論文,83頁。
潘國樑 (1996) 新中橫公路受賀伯風災之遙測技術,地工技術,第57期, 45-54。

謝有忠 (1999) 陳有蘭溪流域土石流發育之地質控制,國立成功大學地球科學系碩士論文,120頁。
顏滄波、吳景祥、莊德永 (1984) 台灣新中部橫貫公路(玉山線)沿線之地質,中國地質學會專刊,第六號,357-367。
蘇定義 (1998) 南投縣和社溪沿線土石流之成因探討,國立台灣大學地質學研究所碩士論文,149頁。
英文部分
Aleotti, P. (2004) A warming system for rainfall-induced shallow failures, Engineering Geology, 73, 247-265.
Cohn, T.A. (1995) Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers, Reviews of Geophysics, Suppl., 117-1123.
Chen, H., Chen, R. H. and Lin, M. L. (1999) Initiative Anatomy of Tungmen Debris Flow, Eastern Taiwan, Jl. Environmental and Engineering Geoscience, 5, No.4, 459-473.
Chen, H. (2000) The Geomorphological Comparison of two Debris Flow and their Triggering Mechanism, Bull. Engineering Geology Environment, 58, No.4, 297-308.
Chen, H. and Su. D. I. (2001) Geological factors for hazardous debris flow in Hoser, Central Taiwan, Environmental Geology, 40, No.9, 1114-1124.
Clague, J.J., Evans, S.G. (2003) Geologic Framework of large historic landslides in Thompson River Valley, British Columbia, Environmental & Engineering Geoscience, 9, no.3, 201-212
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., Horng, M.J., Chen, M.C., Stark, C.P., Lague, D., and Lin, J.C. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen: Nature, 426, 648–651.
Dadson, S.J. (2004), Erosion of an active mountain belt. Ph.D. Thesis, Department of Earth Sciences, University of Cambridge. 40-66, 107-129.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.C., Hsu, M.L., Lin, C.W., Horng, M.J., Chen, C.T., Milliman, J., Stark, C.P. (2004) Earthquake-triggered increase in sediment delivery from an active
mountain belt, Geology, 32, no.8, 733-736.
Densmore, A. and Hovius, N. (2000) Topographic fingerprints of bedrock landslides, Geology, 28, no.4, 371-374.
Fuller, C.W., Willett, S.D., Hovius, N. and Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: new determinations from suspended sediment records and a stochastic model of their temporal variation, The Journal of Geology, 11, 71-87.
Geli, L., Bard, P.Y., and Jullien, B. (1988) The effect of topography on earthquake ground motion: A review and new results: Bulletin of the Seismological Society of America, 78, 42-63.
Goodman, R.E. (1989) Introduction to rock mechanics, John Wiley and Sons, New York, 2rd ed, 562p.
Govers, G. and Rauws, G. (1986) Transporting capacity of overland flow on plane and on irregular beds, Earth Surface Processes and Ladnforms, 11, 515-524.
Harlin, J.M. (1984) Watershed morphometry and time to hydrograph peak, Journal of Hydrology, 67, 141-154.
Hovius, N., Stark, C.P. and Allen, P.A. (1997) Sediment flux from a mountain belt derived by landslide mapping, Geology, 25, no.3, 231-234.
Hovius, N., Stark, C.P., Chu, H.T., Lin, J.C. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan, The Journal of Geology, 108, 73-89.
Hwang, C.E. (1982) Suspended Sediment of Taiwan Rivers and their geomorphological significance, Bulletin of Nation Taiwan Normal University, 27, 649-677.
ISRM (1981) Rock characterization testing & monitoring: ISRM suggested methods, Pergamon, 1-121.
Jenson, R.A. and Wichern, D.W. (1982) Applied Multivariate Statistical Analysis, Prentice-Hall, Inc.
Kao, S.J. and Liu, K.K. (2001) Estimating of suspended load by using the historical hydrometric record from the Lanyang-Hsi watershed, TAO, 12, no.2, 401-414.
Kao, S.J., Chan, S.C., Kuo, C.H. and Liu, K.K. (2005) Transport- dominated sediment loading in Taiwanese rivers: a case study from the Ma-an stream, The Journal of Geology, 113, 217-225.
Keefer, D.K. (2000) Statistical analysis of an earthquake-induced landslide distribution the 1989 Loma Prieta, California event., Engineering Geology, 58, 231–249.
Khazai, B., Sitar, N. (2000) Assessment of Seismic Slope Stability Using GIS Modeling, Geographic Information Sciences, 6, No.2, 121-128.
Khazai, B. and Sitar, N. (2003) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events, Engineering Geology, 71, 79-95.
Lague, D., Davy, P. and Crave, A. (2000) Estimating uplift rate and erodibility from the area-slope relationship: examples from Brittany (France) and numerical modeling, Physics and Chemistry of the Earth, 25, 543-548.
Lee, W.H., Shin, T.C., Kuo, K.W., and Chen, K.C., (1999) CWB Free-Field Strong Motion Data from the 921 Chi-Chi Earthquake, Digital Acceleration Files on CD-ROM, Central Weather Bureau, Taipei.
Li, Y.H. (1975) Denudation of Taiwan island since the Pliocene epoch, Geology, 4, 105-107.
Lin, C.W., Shieh, C.L., Yuan, B.D., Shieh, Y.C, Liu, S.H. and Lee, S.Y. (2003) Impact of Chi-Chi earthquake on the occurrence of landslides and debris flow: example from the Chenyulan river watershed, Nantou, Taiwan, Engineering Geology, 71, 49-61.
Lin, M.L. and Tung, C.C. (2003) A GIS-based potential analysis of the landslide induced by the Chi-Chi earthquake, Engineering Geology, 71, 63-77.
Liu, T. K. (1982) Tectonic implications of fission-track ages from the Central Range, Taiwan. Proc. Geol. Soc. China 25, 22-37.
Malamud, B.D., Turcotte, D.L., Guzzeetti, F. and Reichenbach, P. (2004) Landslide inventories and statistical properties, Earth Surface Processes and Ladnforms, 29, 687-711.
Martin, T., Rood, K., Scheab, J.W. and Church, M. (2002) Sediment transfer by shallow landsliding in the Queen Charlotte island, British Columbia, Can. J. Sci., 39,189-205.
Montgomery, D.R. and Georgiou, E.F. (1993) Channel network source representation using digital elevation models, Water resources research, 29, no.12, 3925-3934.
Ohmori, H. (1993) Changes in the hyposmetric curve through mountain building resulting from concurrent tections and denudation, Geomorphology, 8, 263-277.
Prosser, L.P. and Rustomji, P. (2000) Sediment transport capacity relations for overland flow, Progress in Physical Geography, 24, 179-193.
Schmidt, K. and Montgomery, D.R. (1995) Limits to relief, Science, 270, 617-620.
Shieh, S. L. (2000) Users’ Guide for Typhoon Forecasting in the Taiwan Area (VIII), Central Weather Bureau, Taipei.
Sitar, N., Anderson, S.A., Johnson, K.A. (1992) Conditions leading to the initiation of rainfall-induced debris flows. Geotech. Engrg. Div. Specialty Conf.: Stability and Perf. Of slopes and Embankments-II, ASCE, New York, N. Y., 834-839.

Sklar, L.S. and Dietrich, W.E. (2001) Sediment and rock strength controls on river incision into bedrock, Geological Society of America, 29, no.12, 1087-1090.
Synder, N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J. (2000) Landscape response to tectonic forcing; digital elevation model analysis of stream profiles in the Mendocino triple junction region, Northern California, Geological Society of America Bulletin, 112 (8), 1250–1263.
Snyder, N.P., Wipple, K.W., Tucker, G.E. and Merritts, D.J. (2003) Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California, Geomorphology, 53, 97-127.
Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography, Geological Society of America Bulletin, 63, 1117-1142.
Varnes, D.J. (1978) Slope Movement types and processes, in Schuster, R.L. and R.J. Krizek (ed.), Landslides-Analysis and Control: National Academy of Sciences Transportation Research Board Special Report, No. 176, 12-33.
Whipple, K.X. and Tucker, G.E. (1999) Dynamics of the stream-power incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs, Journal of Geophysical Research, 104, no.B8, 17661-17674.
Whipple, K.X., Kirby, E. and Brocklehurst, S.H. (1999) Geomorphic limits to climate-induced increase in topographic relief, Nature, 401, 39-43.
Wieczorek, G.F., Morgan, B.A., Campbell, R.H. (2000) Debris-Flow hazards in the Blue Ridge of Central Virginia, Environmental & Engineering Geoscience, 6, no.1, 3-23.

Wischmeier, W.H., Smith, D.D. (1978) Predicting rainfall erosion losses. Agricultural Handbook 537, Agricultural Research Service, United States Department of Agriculture.
Wobus, C.W., Hodges, K.V., Whipple, K.X. (2003) Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology, 31, no.10, 861-864.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top