跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐東坤
研究生(外文):Tung-Kun Ou
論文名稱:嘉南地區地下水砷濃度之研究
論文名稱(外文):Arsenic Concentrations of Groundwater in the Chianan Plain, Taiwan
指導教授:劉聰桂劉聰桂引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:88
中文關鍵詞:嘉南地區地下水
外文關鍵詞:Chianangroundwaterarsenic
相關次數:
  • 被引用被引用:10
  • 點閱點閱:806
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
1970年代的研究即顯示台灣嘉南平原,尤其是沿海地區,地下水砷濃度偏高。當時調查分析之水樣採自民間鑽鑿的水井,可能為不同含水層之混合水。本研究分析地下水觀測網計畫所建置的28個觀測站總共84個分層觀測井水樣,包括在野外測量溶氧 (DO)、氧化還原電位 (Eh)、pH、電導度 (EC);室內分析總鹼度、陰離子 (Cl-、SO42-)、陽離子 (Na+、K+、Mg2+、Ca2+、總鐵、總錳、總砷濃度) 與螢光強度等項目,以了解本區地下水砷濃度分布之全貌及其與沈積環境的關係,進而探討砷與其他地球化學參數間的關係,瞭解本區砷釋放的機制。
本研究結果顯示,高砷濃度的地下水處於極還原的缺氧環境 (溶氧皆小於1 mg/l),氧化還原電位皆小於 -110 mV;大部分呈微鹼性。第二、三與四含水層水的砷濃度普遍明顯比第一含水層高,且在八掌溪、急水溪、曾文溪及鹽水溪下游一帶較高。與以往取用民井水樣分析所得的砷濃度分布型態大體上一致。本研究也顯示,在河口灣相地層內的地下水,砷濃度普遍偏高。
本研究利用分子篩過濾法分離地下水中的腐植物質。選用五個不同分子量的篩膜,分離出六個不同分子量範圍的腐植物質。結果顯示腐植物質的分子量主要大部分介於500∼10000 Da.之間,約佔總螢光強度的50∼90%。腐植物質濃度較高的水樣,腐植物質的分子量以1000∼5000 Da.居多。砷主要與分子量介於500∼10000 Da.間的腐植物質結合,約佔總砷濃度的40∼90%;而當水樣的砷濃度較高時,砷亦比較集中在1000∼5000 Da.的腐植物質內。顯示砷在地下水中應是與腐植物質結合。
本區地下水高濃度砷的出現,最重要機制研判是:原本沈積於海陸交界 (尤其是河口灣) 的鐵錳氧化物,因地層轉變為還原狀態而將吸附的砷釋放至水中。海陸相交界的河口灣沈積物,一方面有機物及黏土含量較高,一方面河水中鐵、錳離子因入海時酸鹼度、鹽度改變而易產生沈澱。鐵錳氧化物、黏土礦物及有機物具有強吸附力,能將水中的砷一起沈澱下來。在地層深埋之後,有機物在細菌長時間的新陳代謝下,使得地下水環境慢慢轉變為還原環境,鐵錳的氧化物與氫氧化物,以及有機物與黏土礦物,在還原環境下將砷釋放至水中,使得水中砷濃度增高。當還原程度高時,硫酸根還原而生成的硫離子和水中的鐵離子形成黑色硫化鐵沈澱,使水中的鐵離子濃度大為降低。但釋出至水中的砷因為又與腐植物質結合而大部份仍溶解在水中,造成水中砷濃度高而鐵濃度低的現象。另外,高HCO3-濃度和高pH值也可以造成鐵氧化物表面所吸附的砷釋出,此論點亦可由砷濃度與HCO3-濃度及pH值有正相關性而得到支持。
The Chianan plain in SW Taiwan was well known for its high concentrations of arsenic and humic substances in groundwater, which were considered to be responsible for the endemic Blackfoot disease. Eighty-four groundwater samples were collected from aquifers. Dissolved oxygen (DO), redox potential (Eh), pH and electric conductivity (EC) were measured on-site; major anions (Cl- and SO42-), cations (Na+, K+, Mg2+, Ca2+, ΣFe, ΣMn and ΣAs), and fluorescence intensities were measured in the laboratory. The objectives of this study are the following: (1) to determine geochemical conditions of the aquifers; (2) to obtain the distributions of arsenic concentrations and relationship between arsenic concentration and depositional environments; (3) to understand the mechanism of arsenic release to groundwater.
Groundwaters of high arsenic concentration are characterized by low DO (< 1 mg/l), low ORP (< -110 mV) and pH>7. Arsenic concentrations of the 2nd, 3rd and 4th aquifers, especially in the downstream areas of the Pa-Cheng Stream, Chi-Shui Stream, Tseng-Wen Stream and Yen-Shui Stream, are obviously higher than the 1st aquifer. The arsenic distribution pattern of the 2nd, 3rd and 4th aquifers are similar to that obtained from the private wells. Water samples collected from the estuarine strata were generally high in arsenic contents.
This study used molecular membrane ultrafiltration technique to separate the humic substances into six different molecular weight intervals. Most of the humic substances (ca. 50-90%) have molecular weights of 500-10000 daltons. The distribution pattern of water arsenic distribution in each aquifer was simlar to that of humic substances. The positive correlation between humic substance and arsenic concentrations suggest that arsenic was combined with dissolved humic substances.
The main mechanism responsible for high arsenic concentration of groundwater in the Chianan area was inferred to be the reductive the desorption of arsenic under reducing environment from Fe and Mn oxides previously deposited in the estuary. Estuarine, the border between marine facies and continental facies sediments contain the high content of organic matter and clay minerals, and precipitation of Fe and Mn ions result from alternation of ph and salinity when the river flow into the sea. The very high adsorption capacity of Fe oxides, Mn oxides, clay minerals and organic matters result precipitation of aqueous arsenic. Because after burial of sediment microbial metabolism of organic matter produces a reducing condition. In reducing condition, arsenic was released into solution by Fe- and Mn-oxyhydroxides, clay minerals and organic matters and lead to increase concentration of arsenic. During SO42- reduction, the consequent S2- reacts with Fe2+ to produce FeS and ultimately to pyrite (FeS2), decreasing iron concentraction in groundwater. Because the greater part of arsenic which combines with humic substance dissolve into groundwater, negative correlation exists between arsenic and iron. High HCO3- concentration and high pH mobilize arsenic from surface of iron oxides. The very strong relationship between arsenic and HCO3- concentration and pH support the hypothesis.
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅲ
圖目錄…………………………………………………………………Ⅴ
表目錄…………………………………………………………………Ⅶ
第一章 緒論…………………………………………………………1
1.1 研究動機與目的……………………………………………1
1.2 研究區域地質概述…………………………………………1
1.3 地下水的一般化學特性……………………………………4
1.4 前人相關研究………………………………………………6
1.5 砷的化學特性………………………………………………8
1.5.1 砷在環境中的分布……………………………………8
1.5.2 砷在沈積物—水間之遷移……………………………9
1.5.3 砷的物種及毒性……………………………………10
第二章 研究方法……………………………………………………12
2.1 採樣地點……………………………………………………12
2.2 採樣方法及前處理…………………………………………12
2.3 野外測量與觀察……………………………………………15
2.4 室內水質分析………………………………………………16
2.4.1 陰離子………………………………………………16
2.4.2 總鹼度………………………………………………17
2.4.3 鐵、錳與其它陽離子………………………………17
2.4.4 螢光強度……………………………………………17
2.4.5 砷……………………………………………………18
2.4.6 分離不同分子量腐植物質…………………………18
2.5 分析樣品之品管與品保……………………………………19
第三章 分析數據準確度……………………………………………20
3.1 陰離子………………………………………………………20
3.2 總鹼度………………………………………………………22
3.3 鐵、錳與其它陽離子………………………………………23
3.4 離子平衡……………………………………………………24
3.5 螢光強度……………………………………………………30
3.6 砷濃度………………………………………………………31
第四章 結果與討論…………………………………………………36
4.1 砷與地化環境………………………………………………36
4.1.1 溫度…………………………………………………39
4.1.2 pH值…………………………………………………40
4.1.3 電導度………………………………………………41
4.1.4 溶氧…………………………………………………43
4.1.5 氧化還原電位………………………………………43
4.2 砷的分布……………………………………………………45
4.2.1 砷在各含水層的分布………………………………45
4.2.2 砷在數個剖面的分布………………………………51
4.3 砷與腐植物質………………………………………………58
4.3.1 不同分子量範圍之螢光強度…………………………59
4.3.2 與不同分子量範圍的腐植物質結合的砷濃度………62
4.4 綜合討論……………………………………………………66
4.4.1 嘉南平原地下水砷的來源…………………………66
4.4.2 沈積物中砷的釋放機制……………………………67
第五章 結論…………………………………………………………75
參考文獻………………………………………………………………76
附錄一:螢光強度分析值……………………………………………82
附錄二:通過不同分子量篩膜後之濾液的螢光強度與砷濃度……87
(一)中文部分
王子誠 (2003) 嘉南平原地下水腐植物質之含量及其與砷、鐵及錳濃度之關係:螢光強度研究,國立台灣大學地質科學研究所碩士論文;共69頁。
王榮德、胡賦強、江錦燁、吳新英 (1983) 飲用水改善前後,烏腳病發生率之研究,烏腳病之研究報告,第18輯,台灣省烏腳病防治中心:頁21-25。
中央地質調查所網站 http://hydro.moeacgs.gov.tw/
水資會 (1981) 南部地區高雄台南地區地下水調查報告,31頁。
行政院環境保護署環境檢驗所 (2003)水中鹼度檢測方法-滴定法:W449.00B。
行政院環境保護署環境檢驗所 (2003) 地下水採樣方法:W103.52B。
行政院環境保護署環境檢驗所 (1994) 自然水體中腐植物質螢光強度檢測方法-Ⅰ:W940.50T。
吳建民 (1989) 烏腳病地區地下水之水文地質特性。經濟部中央地質調查所水文地質研討會論文專輯。
吳樂群 (1999) 嘉南平原沈積物與沈積環境分析及地層對比研究,台灣地區地下水觀測網第二期計畫—水文地質調查研究—八十八年度報告;共119頁。
吳樂群 (2004) 朴子、佳里及台南五萬分之一地質圖幅測製計畫(2/2),經濟部;共97頁。
呂鋒洲、楊重光、林國煌 (1975) 嘉南烏腳病患區飲用地下水之理化性質,台灣醫學會雜誌,第74卷:頁596-605。
呂鋒洲、山村行夫、山內博 (1987) 台灣烏腳病患區一口井水中螢光物質之研究:腐植物質,台灣醫誌,第87卷第1號:頁66-74。
呂鋒洲、謝宏濱、吳新英、孫金財、郭宗禮、李俊仁、胡惠德 (1989) 烏腳病流行區井水中螢光強度、砷濃度、pH值和總溶解固體彼此之相關性及烏腳病流行度之探討,經濟部中央地質調查所水文地質研討會論文專輯:頁151-164。
呂鋒洲 (1996) 中國大陸地方病考察記:砷引起烏腳病學說的省思,健康世界,健康世界出版社,第130期:頁59-74。
李志威 (2000) 台灣西南港尾及新塭岩心孔隙水及沉積物地球化學特性之研究,國立台灣大學地質學研究所碩士論文,共59頁。
林義棟 (1996) 台南縣宅港及三寮灣鑽探岩心沈積環境分析,國立成功大學地球科學研究所碩士論文;共120頁。
陳郁挺 (2004) 嘉南平原布袋鑽井岩心硫酸還原菌之研究,國立台灣大學地質學研究所碩士論文,共81頁。
郭崇義 (1993) 植物質在地化系統上之研究,國立台灣大學海洋研究所博士論文;共185頁。
高聰明、高尚榮 (1954) 考察特發性脫疽的原因,台灣醫學會雜誌,第53卷:第272頁。
夏明鴻 (1998) 台灣西南海岸平原義竹井岩心地球化學研究,國立台灣大學地質學研究所碩士論文;共94頁。
畢如蓮 (1995) 台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大學地質學研究所碩士論文:共77頁。
陳于高 (1993) 晚更新世以來南台灣地區海水面變化與新構造運動研究。國立台灣大學地質學研究所博士論文:共158頁。
陳拱北 (1974) 烏腳病人的分布調查研究,省衛生處委託研究的烏腳病調查研究中間報告:頁7-25。
陳拱北 (1976) 烏腳病流行病學的研究,烏腳病之研究報告,第三輯,台灣省烏腳病防治小組刊印。
陳冠宇 (1996) 台灣西南宅港與三寮灣地層孔隙水地球化學研究,國立台灣大學地質科學研究所碩士論文;共71頁。
陳麒全 (2003) 台灣嘉南平原新東及錦湖兩地沈積物砷富集與釋出之研究,國立台灣大學地質科學研究所碩士論文;共69頁。
陳鎮東 (1994) 海洋化學,國立編譯館;共551頁。
曾文賓 (1976) 烏腳病之診斷、預防與治療,烏腳病防治研究報告第一輯,台灣省烏腳病防治小組。
黃郁婷 (2001) 嘉南平原曾文溪流域晚第四系之沈積環境暨層序初探,國立台灣大學地質科學研究所碩士論文;共187頁。
經濟部水資源局 (2001) 台灣地區地下水觀測網—水質監測調查分析(3/5)。經濟部水資源局。
廖旭茂 (1995) 台灣環境中無機砷物種分析之研究,國立台灣大學海洋研究所碩士論文;共86頁。
劉聰桂 (1995) 台灣西南海岸變遷(北港至二仁溪)台灣西南海岸平原地下水地球化學研究及與大陸地方性砷中毒病區環境地球化學之對比研究。行政院國科會研究計畫報告。
劉聰桂、畢如蓮 (1995) 台灣西南海岸平原水文地質與地球化學初探。中國地質學會八十四年年會摘要:頁536-540。
劉聰桂 (1999) 嘉南平原地下水定年分析及垂向水質變化研究。經濟部水資源局。
賴典章、費立沅、呂學諭 (2002) 嘉南平原地下水分層架構—兼論台灣西南部地下水分區界線,第五屆地下水資源及保護研討會論文集:A-1~A-6。
賴典章、費立沅、江崇榮 (2003) 台灣地區地下水分區特性,水文地質調查與應用研討會論文集:1-24頁。
羅美棧、沈元肇、林坤金 (1975) 本省地下水含砷量調查研究報告,台灣省環境衛生實驗所。
(二)英文部分
Allard, B., Su, H. and Geimvall, A. (1991) Effects of acidification and natural organic materials on the mobility of arsenic in the environment: Water, Air, and Soil pollution, 57-58, 269-278.
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S. and Kato, K. (2003) Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes: Journal of Geochemical Exploration, 77, 109-131.
Anawar, H.M., Akai, J. and Sakugawa, H. (2004) Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater: Chemosphere, 54, 753-762.
Antonell, M.L., Calace, N., Centioli, D., Petronio, B.M. and Poetroletti, M. (2001) Complexing capacity of differect molecular weight fractions of sedimentary humic substances: Analytical Letters, 34, 989-1002.
Ballantyne, J.M. and Moore, J.N. (1988) Arsenic geochemistry in geothermal systems: Geochimica et Cosmochimica Acta, 52, 475-483.
Beauchemin, D., Bednas, M.E., Berman, S.S., McLaren, J.W., Siu, K.W.M. and Sturgeon, R.E. (1988) Identification and quantitation of arsenic species in a dogfish muscle reference material for trace elements: Analytical Chemistry, 60, 2209-2212.
Belzile, N. and Tessier, A. (1990) Interactions between arsenic and iron oxyhydroxides in lacustrine sediments: Geochimica et Cosmochimica Acta, 54, 103-109.
Berner R.A. (1981) A new geochemical classification of sedimentary environment: Journal of sedimentary petrology, 51, 359-365.
Bhattacharya, P., Chatterjee, D. and Jacks, G. (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply: Water Resources Development, 13( No. 1), 79-92.
Boerschke, R.C., Gallie, E.A., Belzile, N., Gedye, R.N. and Morris, J.R. (1996) Quantitative elemental and structural analysis od dissolved organic carbon fractions from lakes near Sudbury, Ontario: Canadian Journal of Chemistry, 74, 2460-2470.
Boulegue J., Lord Ⅲ C.J. and Church T.M. (1982) Sulfur speciation and associated trace metals(Fe, Cu) in the pore waters of Great Marsh, Delaware: Geochimica et Cosmochimica Acta, 46, 453-464.
Brookins, D.G. (1988) Eh-pH diagrams for geochemistry. Springer-Verlag, Berlin.
Chen, S.L., Dzeng, S.R., Yang, M.H., Chlu, K.H., Shieh, G.M. and Wal, C.M. (1994) Arsenic Species in Groundwaters of the Blackfoot Disease Area, Taiwan: Environmental Science and Technology, 28, 877-881.
Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry: Reviews in Mineralogy, 23, 177-260.
Dhar, R.K., Biswas, B.K., Samanta, G., Mandal, B.K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A.W., Ahmed, S.K. and Hadi, S.A. (1997) Groundwater arsenic calamity on Bangladesh: Current Science, 73, 48-59.
Drever,J.I. (1988) The Geochemistry of Natural Waters, 2nd Ed., Prentice Hall, Inc. Englewood Cliffs, New Jersey, 437.
Elderfield, H., McCaffery, R.J., Luedtke N., Bender M. and Truesdall, V.W. (1981) Chemical diagenesis in Narragansett Bay sediments: American journal of science, 281, 1021-1055.
Freeze, R.A. and Cherry, J. A. (1979) Grunderwater, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 604
Gaffeny J.S. (1996) Humic and Fulvic Acids: Isolation, Structure, and Environmental Role, American Chemical Society, Washinton, DC, 338.
Goh, K.H. and Lim, T.T. (2005) Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment: Applied Geochemistry, 20, 229-239.
Hunt, L.E. and Howard, A.G. (1994) Arsenic speciation and distribution in the Carnon estuary following the acute the acute discharge of contaminated water from a disused mine: Marine Pollution Bulletin, 28( No. 1), 33-38.
Hsu, L.M. (1984) Pleistocence formation with dissolved-in-water type gas in the Chianan Plain, Taiwan: Petroleum Geology of Taiwan, 20, 199-213.
Jackson, B.P. and Miller, W.P. (2000) Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides: Soil Science Society of America journal, 64, 1616–1622.
Kim, M.J., Nriagu, J. and Haack, S. (2000) Carbonate ions and arsenic dissolution by groundwater: Environmental Science and Technology, 34, 3094-3100.
Kim, M.J., Nriagu, J. and Haack, S. (2002) Arsenic species and chemistry in groundwater of southeast Michigan: Environmental Pollution, 120, 379-390.
Lovley, D.R. (1987) Organic matter mineralization with the reduction of ferric iron: a review: Geomicrobiology Journal, 5, 375-399.
Mandal, B.K., Chowdhury, T.R., Samanta, G., Mukherjee, D.P., Chanda, C.R., Saha, K.C. and Chakraborti, D. (1998) Impcat of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India: The Science of the Total Environment, 218, 185-201.
Mandal, B.K. and Suzuki, K.T. (2002) Arsenic round the world: a review: Talanta, 58, 201-235.
Masscheleyn, P.H., Delaune, R.D. and Patrick, W.H. (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil: Environmental Science and Technology, 25, 1414-1419.
Mcarthur, J.M. (1999) Arsenic poisoning in the Ganges delta: Nature, 401, 545- 547.
Myneni, S.C.B., Traina, S.J., Logan, T.J. and Waychunas, G.A. (1997) Oxyanion behavior in alkaline environments: sorption and desorption of arsenate in ettringite: Environmental Science and Technology, 31, 1761-1768.
Nickson, R.T., McArthur, J.M., Burgess, W.G., Ahmed, K.M., Ravenscroft, P. and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater: Nature, 395, 338.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M. (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal: Applied Geochemistry, 15, 403-413.
Pantsar-Kallio, M. and Manninen, P.K.G. (1997) Speciation of mobile arsenic in soil samples as a function of pH: The Science of the Total Environment, 204, 193-200.
Pierce, M.L. and Moore, C.B. (1980) Adsorption of arsenic on amorphous iron hydroxide from dilute aqueous solution: Environmental Science and Technology, 14, 214-216.
Pierce, M.L. and Moore, C.B. (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide: Water Resources, 16, 1247-1253.
Senesi, N., Miano, T.M., Provenzano, M.R. and Brunett, G. (1991) Characterization, differertiation, and classification of humic substances by fluorescence spectroocopy: Soil Science, 52, 259-271.
Shraim, A., Sekarn, N.C., Anuradha, C.D. and Hirano, S. (2002) Speciation of arsenic in tube-well water samples collected from West Bengal, India, by high-performance liquid chromatography-inductively coupled plasma mass spectrometry: Applied Organometallic Chemistry, 16, 202-209.
Smedley, P.L., Edmunds, W.M. and Pelig-Ba, K.B. (1996) Mobility of arsenic in groundwater in the Obuasi gold-mining area Ghana: some implications for human health. In: Appleton, J. D., Fuge, R. and McCall, G. J. H. (Eds.), Environmental Geochemistry and Health 113, Geological Society Special Publication, London;163-181.
Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters: Applied Geochemistry, 17, 517-568.
Suess E. and Djafari D. (1977) Trace metal distribution in Baltic Sea Ferro-manganese concretions:inferences on accretion rates: Earth and planetary science letters, 35, 49-54.
Szramek, K., Walter, L.M. and McCall, P. (2004) Arsenic mobility in groundwater/surface water systems in carbonate-rich Pleistocene glacial drift aquifers(Michigan): Applied Geochemistry, 19, 1137-1155.
Thurman, E.M. (1985) Humic substances in groundwater. In:Humic Substances in Soil, Sediment, and Water. Wiley, New York., 87-103.
Welch, A.H., Lico, M.S. and Hughes, J.L. (1988) Arsenic in ground-water of the Western United States: Ground Water, 26, 333-347.
WHO (2001) Environmental Health Criteria 224: Arsenic compounds 2nd edition. World Health Organisation, Geneva.
Williams, M., Fordyce, F., Paijitprapapon, A. and Charoenchaisri, P. (1996) Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand: Environmental geology, 27, 16-33.
Wong, G.T.F. and Moy, C.S. (1984) Cesium-137, metals and organic carbon in the sediments of the James River Estuary, Virginia: Estuarine, Coastal and Shelf Science, 18, 37-49.
Xu, H., Allard, B. and Grimvall, A. (1988) Influence of pH and organic substances on the adsorption of As(V) on geological materials: Water, Air, and Soil Pollution, 40, 293-303.
Xu, H., Allard, B. and Grimvall, A. (1991) Effect of acidification and natural organic materials on the mobility of arsenic in the environment: Water, Air, and Soil Pollution, 57-58, 269-278.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top