跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭敦仁
研究生(外文):Tun-Jen, Hsiao
論文名稱:石墨包裹鎳奈米晶粒在高溫高壓下合成鑽石的初步探討
論文名稱(外文):Preliminary study on the synthesis of diamond by using graphite-encapsulated nickel nanoparticles at high pressure and high temperature
指導教授:鄧茂華鄧茂華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:地質科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:83
中文關鍵詞:石墨包裹鎳奈米晶粒合成鑽石
外文關鍵詞:graphite-encapsulated nickel nanoparticlesthe synthesis of diamond
相關次數:
  • 被引用被引用:10
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
自Tracy Hall在1955年成功地以環狀高壓機將石墨與硫化鐵(FeS)觸媒合成出鑽石以來,科學家即不斷地研究鑽石合成原理,但對於其生長機制尚未全然了解。至目前為止的高溫高壓下合成鑽石技術,所用之原料通常為微米級的石墨以及金屬催化劑,其中的催化劑通常為熔融的過渡元素,包括ⅧB族的Fe、Co、Ni、Ru、Th、Pd、Os、Ir、Pt和另三個過渡元素Mn、Cr、Ta。為了對鑽石形成機制有更深入的了解,本研究採用石墨包裹金屬奈米晶粒(Graphite Encapsulated Metal Nanoparticles, 簡稱GEM)作為全新的碳來源及催化劑,以高溫高壓法來合成鑽石晶粒。GEM為粒徑10-100 nm的球狀複合材料,其內核為金屬,外殼為石墨層。根據傳統鑽石合成機制理論的預測,以GEM合成鑽石的優點主要有以下三點:一、具有極大的比表面積,二、內核金屬即為合成鑽石所需要的催化劑,不需要另外添加,三、外層石墨與內核金屬緊密接觸,應可加速反應速率。
本實驗主要分為兩階段,第一階段為製造足夠數量的鎳GEM奈米晶粒作為合成鑽石的原料,第二階段則是將GEM粉末進行兩組高溫高壓實驗。A組實驗為將初產物粉末直接進行高溫高壓實驗,B組之修正程序實驗則先將初產物進行酸溶、真空熱處理,使GEM外層的石墨殼層增厚且增加結晶度,再進行高溫高壓實驗。合成鑽石所使用的高溫高壓設備為六面頂高壓機,其產生的溫度、壓力可達到鑽石穩定相區(1300℃與5.2 GPa)。
實驗結果發現,雖然以傳統石墨與催化金屬粉末配置的對照組成功的合成出微米級的鑽石,但是實驗組以X光繞射與拉曼光譜分析均很意外的未觀察到明顯的鑽石訊號,必須利用穿透式電子顯微鏡(TEM)之電子繞射分析才發現產物中含有少量的奈米鑽石。推測其生長機制為在高溫高壓實驗時,GEM的鎳核心會熔化析出,使外層的石墨殼層崩解,形成許多結晶度差、粒徑為奈米級的石墨微片。而只有部分結晶度較好之奈米級的石墨微片受到催化劑作用才會形成奈米鑽石,其他結晶度差的石墨必須要先經過再結晶,才有機會被催化成鑽石,因此樣本中不會析出並大量的鑽石微片,也因此導致先生成的奈米鑽石晶粒,故無法繼續長成微米級的鑽石晶粒。另外在實驗區中也意外發現結晶度良好具六邊形外形的石墨晶體,本研究推測(1)因為奈米粉末的孔隙度高,難以完全緻密化,在高溫高壓實驗時,容易造成壓力分佈不平均,而且(2)用來分隔實驗區的石墨隔片,因電阻較高也會導致溫度高於對照組。因此使得實驗區中的溫壓條件落入石墨的生長區內,加上受到鎳之觸媒催化作用,隨著實驗時間增加與石墨再結晶作用,漸漸形成微米級又具良好外形的石墨晶體。綜合上述,本研究以GEM當作合成鑽石的原料,但實驗結果未發現微米級的鑽石,推究其原因,包括溫度、壓力及石墨層結晶度不夠等,都可以歸因於原料的奈米結構所導致。
Since 1955 when Tracy Hall had first successfully synthesized diamond by using a belt high-pressure apparatus from a mixture of troilite (FeS) and graphite raw materials, many scientists have been studying on the formation mechanism of diamond and have gained some significant progress. The raw materials used in modern diamond synthesis technology are usually micrometer sized graphite powder and metal catalyst. This research, however, uses a new raw material, the graphite-encapsulated metal nanoparticle (GEM), as the carbon source and metal catalyst in the synthesis of diamond. GEM is a composite material, whose grain size is 10-100 nm and with a core/shell structure, i.e., the core is metal, and the shell is graphite. The three possible advantages of using GEM to synthesize diamond are: its large specific area, the already existed catalytic core metal, and the close contact of core/shell structure.
Though the comparing section of the sample that was composed of industrial graphite and metal catalyst had successfully produced diamonds, in the experiment-section of the sample it was a surprise that we could not find any diamond with either XRD or Raman spectrum analysis, only by TEM that we found some nanodiamonds. The possible formation mechanisms of nanodiamond are: first, the nickel core melts and the nickel precipitates outside of the graphitic shells. Second, graphite shells become disintegrated and forming many crystallized graphite flakes. Third, the graphite flakes are catalyzed by the nickel catalyst and transformed into nanodiamond. In addition, we found a well-crystallized graphite single crystal by TEM. This may indicate that first, the pressure during the experiments was actually lower than the required high pressure. Second, because the graphite pieces that used in the experiments to prevent any contamination have a higher resistance, they would probably produce more heat and create a higher temperature. Thus, the relatively lower pressure and higher temperature experimental conditions would lead to the recrystallization of graphite, and produce the hexagon graphite crystal observed.
In summary, the nanostructure of the GEM nanopaticles may probably have deviated the required experimental temperature and pressure. As a result, we cannot find any larger sized diamond other than nanodiamond.
致謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅳ
目錄 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章 緒論 1
1-1 研究目的 1
1-2 本文內容 2
第二章 理論背景與文獻回顧 3
2-1 石墨包裹奈米晶粒 3
2-1-1 石墨包裹奈米晶粒的結構與型態 3
2-1-2 石墨包裹奈米晶粒的形成機制 4
2-1-3 週期表中各元素與碳作用後的狀態 6
2-2 合成鑽石 10
2-2-1 石墨的晶體結構 10
2-2-2 鑽石的晶體結構 11
2-2-3 碳相圖 14
2-2-4 高溫高壓觸媒法合成鑽石 15
2-2-5 震波法合成奈米鑽石 16
2-3 合成鑽石的機制 17
2-3-1 溶液說 17
2-3-2 結構轉變說 19
2-4 合成鑽石的生長機制 20
第三章 實驗方法 22
3-1 石墨包裹奈米晶粒的製造裝置-真空艙體與電弧裝置 22
3-1-1 真空艙 22
3-1-2 電弧裝置 22
3-2 高溫高壓設備 24
3-2-1 六面頂高壓機(Cubic anvil apparatus) 24
3-2-2 靜態高壓的產生 26
3-2-3 高壓的限制因素 28
3-2-4 高壓裝置中高溫的產生 28
3-2-5 高溫的限制因素 30
3-3 實驗流程 30
3-3-1 原始程序(Original Process) 31
3-3-2 修正程序(Modified Process) 35
3-4 樣本處理 38
3-5 分析儀器 39
3-5-1 X光粉末繞射儀(X-ray powder diffraction, XRD) 39
3-5-2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 40
3-5-3 拉曼散射光譜儀(Raman Scattering Spectroscopy, RS) 40
3-5-4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 41
3-5-5 電子探針微區分析儀(Electron Probe Microanalyzer, EPMA) 41
3-5-6 比表面積與孔洞分析儀(Surface Area and Porosity Analyzer) 42
第四章 實驗結果與討論 43
4-1 初產物粉末的定性分析 43
4-1-1 石墨包裹鎳奈米晶粒與工業用粉末的比較 47
4-2 高溫高壓實驗後樣本的初步產狀 48
4-2-1 A組實驗 48
4-2-2 B組實驗 51
4-2-3 對照組合成鑽石的比較 54
4-3 儀器分析結果 55
4-3-1 X光粉末繞射分析的結果 55
4-3-2 拉曼光譜分析結果 60
4-3-3 穿透式電子顯微鏡分析結果 63
4-4 綜合討論 68
4-4-1 石墨隔片的影響 68
4-4-2 石墨包裹鎳奈米晶粒的石墨層對合成鑽石的影響 69
4-4-3 石墨包裹鎳奈米晶粒在合成鑽石的溫壓條件 72
4-5 石墨包裹鎳奈米晶粒合成鑽石的生長機制 72
4-5-1 奈米鑽石的生長機制 73
4-5-2 實驗區中發現晶形完整石墨的意義 75
第五章 結論與建議 77
參考文獻 79
中文部份

王秦生(2002)超硬材料製造。中國標準出版社出版。
宋健民(2000a)鑽石合成。全華科技圖書股份有限公司出版。
宋健民(2000b)超硬材料。全華科技圖書股份有限公司出版。
汪健民(1998)材料分析。中國材料科學學會出版,共743頁。
呂璞石,黃振賢(1987)金屬材料。文京圖書有限公司出版,共459頁
林春長(2002)石墨包裹奈米鈷晶粒之純化研究。台灣大學地質科學系碩士論文,共124頁。
沈曾民(2003)新型碳材料。化學工業出版社出版。
張麗娟(1999)石墨包裹奈米鎳晶粒的純化分離效果初步研究。台灣大學地質科學系碩士論文,共140頁。
潘冠彰(2001)含自然衍生性C60與微碳管新石墨的發現。台灣大學材料科學研究所碩士論文。
鄭啟輝(2002)用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果。台灣大學地質科學系碩士論文,共69頁。












英文部分

Bond, G. C. (1987) heterogeneous catalysis: principles and applications, second edition.

Bovenkerk, H. P. (1961) Method for producing improved diamond crystals. US Patent 2992900, Example 1, column 6.

Bundy, F. P., Kasper, J. S. (1967) Hexagonal diamond-a new form of carbon. J. Chem. Phys., 46, 3437-3446.

Budy, F. P. (1994) A history of the science and technology of diamond synthesis. AIP Conference Proceedings, 309, 495-497.

Bundy, F. P., Hall, H. T., Strong, H. M., Wentorf, R. H. (1955) Man-made diamonds. Nature, 176, 52-58.

DeCarli, P. S., Jamieson, J. C., (1961) Formation of diamond by explosive shock. Science, 133, 1821-1822.

Dillon, A. C., Gennett, T., Jones, k. M., Alleman, J. L., Parilla, P. A., Hebenn, M. J., (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater., 11, 1354-1358

Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J. H., Johnson, D. L., Mason, T. O., Weertman, J. R. (1995) Controlled-size nanocapsules. Nature, 374, 602.

Edington, J. W., (1985) Practical electron microscopy in materials science. Erudition publications company.

Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H., Hwang, J. H. (1997) A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J. Mater. Res., 12, 3328-3333.

Ferro S., (2002) Synthesis of diamond. J. Mater. Chem, 12, 2843–2855.

Gamarnik, M. Y. (1996) Size-related stabilization of diamond nanoparticles., Nanostruct. Mater., 7, 651-658..

Gonzalez, E. J., Hockey, B., Piermarini, G. J. (1996) High pressure compaction and sintering of nano-size γ-Al2O3 powder. Mater. Manuf. Processes, 11, 951-967.

Gou, C. C., (1972) Unpublished report at Beijing 152 Factory and at the conference on the formation mechanism of synthetic diamond crystals, Jengzhou, China.

Hall, H. T. (1961) The Synthesis of diamond. J. Chem. Edu., 38, 484-491.

Hall, H. T. (1970) Personal Experiences in high pressure. The Chemist. 47, 276-279.

Hirano, S. I., Shimono, K., Naka, S. (1982) Diamond formation from glassy carbon under high pressure and temperature conditions. J. Mater. Sci., 17, 1856-1862.

Host, J. J., Dravid, V. P., Teng, M. H., Elliott, B. R., Hwang, J. H., Mason. T. O., Johnson, D. L. (1997) Graphite encapsulated nanocrystals produced using a low carbon: metal ration. J. Mater. Res., 12, 1268-1273.

Jiao, J., Seraphin, S. (1996) Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanopaticles. J Appl. Phys., 80, 103-108.

Lide,D. R. (1999) CRC Handbook of Chemistry and Physics 80th edition, 4-7~4-123.

Liander, H. (1955) Artificial diamonds. ASEA J. 28, 97-98.

Liu, H., Dandy, D. S., (1995) Diamond chemical vapor deposition nucleation and early groth stages. Noyes publications.

Onodera, A., Higashi, K., Irie, Y. (1988) Crystallization of amorphous carbon at high static pressure and high temperature. J. Mater. Sci., 23, 422-428.

Pierson, H. O. (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes publications.

Regueiro, M. N., Monceau, P., Hodeau, J. L. (1992) Crushing C60 to diamond at room temperature. Nature, 335, 237-239.

Seraphin, S., Zhu, D., Jiao, J., Minke, M., Wang, S. (1994) Catalytic role of nickle, palladium, and platinum in the formation of carbon nanoclusters. Chem. Phys. Lett., 217, 191.

Seraphin, S., Zhou, D., Jiao, J. (1996) Filling the carbon nanocages. J. Appl. Phys., 40, 2097-2104.

Strong, H. M., Hanneman, R. M., (1967) Crystallization of Diamond and graphite. J. Chem. Phys. 46, 3668-3676.

Subramoney, S., Ruoff, R. S., Lorents, D. C., Malhotra, R. (1993) Radial single-layer anotubes. Nature, 366, 637.

Sung C. M., Tai, M. F., Cheng, C. S., Huang, Q. S., Yao, Y. D. (1995/1996) Kinetics of the graphite to diamond transition under high pressure, High Temp.-High Press., 27/28, 499-521.

Sung, C. M. (1997) A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis. High Temp.-High Press., 29, 253-293.

Sung C. M., Tai, M. F. (1997) Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Met. Hard Mater, 15, 237-256.

Sung, C. M., Tai, M. F. (1997) The reversible transition of graphite under high pressure: implications for the kinetic stability of lonsdaleite at intermediate temperature. High Temp.-High Press., 29, 631-648.

Sung, C. M., (2001) The optimized cell design for high pressure synthesis of diamond. Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference (ADC /FCT), 253, 2001

Teng, M. H., Host, J. J., Hwang, J. H., Elliott, B. R., Weertman, J. R., Mason. T. O., Dravid, V. P., Johnson, D. L. (1995) Nanophase Ni paricles produced by a blown arc method. J. Mater. Res., 10, 233-236.

Tomita, M., Saito, Y., Hayashi, T. (1993) LaC2 encapsulated in graphite nanoparticles. Jpn. J. Appl. Phys., 32, L280-282.

Tuinstra, F., Koenig, J. L., (1970) Raman spectrum of graphite. J. Chem. Phys., 53, 1126-1130.

Wentorf, R. H. (1965) “Behavior of some carbonaceous materials at very high pressures and high temperatures,” J. Chem. Phys., 69, No.9, p.3063-3069.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊