中文部份
王秦生(2002)超硬材料製造。中國標準出版社出版。
宋健民(2000a)鑽石合成。全華科技圖書股份有限公司出版。
宋健民(2000b)超硬材料。全華科技圖書股份有限公司出版。
汪健民(1998)材料分析。中國材料科學學會出版,共743頁。
呂璞石,黃振賢(1987)金屬材料。文京圖書有限公司出版,共459頁
林春長(2002)石墨包裹奈米鈷晶粒之純化研究。台灣大學地質科學系碩士論文,共124頁。沈曾民(2003)新型碳材料。化學工業出版社出版。
張麗娟(1999)石墨包裹奈米鎳晶粒的純化分離效果初步研究。台灣大學地質科學系碩士論文,共140頁。潘冠彰(2001)含自然衍生性C60與微碳管新石墨的發現。台灣大學材料科學研究所碩士論文。
鄭啟輝(2002)用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果。台灣大學地質科學系碩士論文,共69頁。
英文部分
Bond, G. C. (1987) heterogeneous catalysis: principles and applications, second edition.
Bovenkerk, H. P. (1961) Method for producing improved diamond crystals. US Patent 2992900, Example 1, column 6.
Bundy, F. P., Kasper, J. S. (1967) Hexagonal diamond-a new form of carbon. J. Chem. Phys., 46, 3437-3446.
Budy, F. P. (1994) A history of the science and technology of diamond synthesis. AIP Conference Proceedings, 309, 495-497.
Bundy, F. P., Hall, H. T., Strong, H. M., Wentorf, R. H. (1955) Man-made diamonds. Nature, 176, 52-58.
DeCarli, P. S., Jamieson, J. C., (1961) Formation of diamond by explosive shock. Science, 133, 1821-1822.
Dillon, A. C., Gennett, T., Jones, k. M., Alleman, J. L., Parilla, P. A., Hebenn, M. J., (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater., 11, 1354-1358
Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B. R., Hwang, J. H., Johnson, D. L., Mason, T. O., Weertman, J. R. (1995) Controlled-size nanocapsules. Nature, 374, 602.
Edington, J. W., (1985) Practical electron microscopy in materials science. Erudition publications company.
Elliott, B. R., Host, J. J., Dravid, V. P., Teng, M. H., Hwang, J. H. (1997) A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J. Mater. Res., 12, 3328-3333.
Ferro S., (2002) Synthesis of diamond. J. Mater. Chem, 12, 2843–2855.
Gamarnik, M. Y. (1996) Size-related stabilization of diamond nanoparticles., Nanostruct. Mater., 7, 651-658..
Gonzalez, E. J., Hockey, B., Piermarini, G. J. (1996) High pressure compaction and sintering of nano-size γ-Al2O3 powder. Mater. Manuf. Processes, 11, 951-967.
Gou, C. C., (1972) Unpublished report at Beijing 152 Factory and at the conference on the formation mechanism of synthetic diamond crystals, Jengzhou, China.
Hall, H. T. (1961) The Synthesis of diamond. J. Chem. Edu., 38, 484-491.
Hall, H. T. (1970) Personal Experiences in high pressure. The Chemist. 47, 276-279.
Hirano, S. I., Shimono, K., Naka, S. (1982) Diamond formation from glassy carbon under high pressure and temperature conditions. J. Mater. Sci., 17, 1856-1862.
Host, J. J., Dravid, V. P., Teng, M. H., Elliott, B. R., Hwang, J. H., Mason. T. O., Johnson, D. L. (1997) Graphite encapsulated nanocrystals produced using a low carbon: metal ration. J. Mater. Res., 12, 1268-1273.
Jiao, J., Seraphin, S. (1996) Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanopaticles. J Appl. Phys., 80, 103-108.
Lide,D. R. (1999) CRC Handbook of Chemistry and Physics 80th edition, 4-7~4-123.
Liander, H. (1955) Artificial diamonds. ASEA J. 28, 97-98.
Liu, H., Dandy, D. S., (1995) Diamond chemical vapor deposition nucleation and early groth stages. Noyes publications.
Onodera, A., Higashi, K., Irie, Y. (1988) Crystallization of amorphous carbon at high static pressure and high temperature. J. Mater. Sci., 23, 422-428.
Pierson, H. O. (1993) Handbook of carbon, graphite, diamond and fullerenes. Noyes publications.
Regueiro, M. N., Monceau, P., Hodeau, J. L. (1992) Crushing C60 to diamond at room temperature. Nature, 335, 237-239.
Seraphin, S., Zhu, D., Jiao, J., Minke, M., Wang, S. (1994) Catalytic role of nickle, palladium, and platinum in the formation of carbon nanoclusters. Chem. Phys. Lett., 217, 191.
Seraphin, S., Zhou, D., Jiao, J. (1996) Filling the carbon nanocages. J. Appl. Phys., 40, 2097-2104.
Strong, H. M., Hanneman, R. M., (1967) Crystallization of Diamond and graphite. J. Chem. Phys. 46, 3668-3676.
Subramoney, S., Ruoff, R. S., Lorents, D. C., Malhotra, R. (1993) Radial single-layer anotubes. Nature, 366, 637.
Sung C. M., Tai, M. F., Cheng, C. S., Huang, Q. S., Yao, Y. D. (1995/1996) Kinetics of the graphite to diamond transition under high pressure, High Temp.-High Press., 27/28, 499-521.
Sung, C. M. (1997) A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis. High Temp.-High Press., 29, 253-293.
Sung C. M., Tai, M. F. (1997) Reactivities of transition metals with carbon: implications to the mechanism of diamond synthesis under high pressure. Int. J. Refract. Met. Hard Mater, 15, 237-256.
Sung, C. M., Tai, M. F. (1997) The reversible transition of graphite under high pressure: implications for the kinetic stability of lonsdaleite at intermediate temperature. High Temp.-High Press., 29, 631-648.
Sung, C. M., (2001) The optimized cell design for high pressure synthesis of diamond. Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference (ADC /FCT), 253, 2001
Teng, M. H., Host, J. J., Hwang, J. H., Elliott, B. R., Weertman, J. R., Mason. T. O., Dravid, V. P., Johnson, D. L. (1995) Nanophase Ni paricles produced by a blown arc method. J. Mater. Res., 10, 233-236.
Tomita, M., Saito, Y., Hayashi, T. (1993) LaC2 encapsulated in graphite nanoparticles. Jpn. J. Appl. Phys., 32, L280-282.
Tuinstra, F., Koenig, J. L., (1970) Raman spectrum of graphite. J. Chem. Phys., 53, 1126-1130.
Wentorf, R. H. (1965) “Behavior of some carbonaceous materials at very high pressures and high temperatures,” J. Chem. Phys., 69, No.9, p.3063-3069.