跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林凱南
研究生(外文):Kai-Nan Lin
論文名稱:晶粒細化對TiNi及TiNiCu形狀記憶合金相變態行為影響之研究
論文名稱(外文):A Study on Phase Transformation of Fine-grained TiNi and TiNiCu Shape Memory Alloys
指導教授:吳錫侃
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:218
中文關鍵詞:TiNi基形狀記憶合金冷輥壓快速凝固再結晶退火麻田散體變態制振能
外文關鍵詞:TiNi shape memory alloyscold rollingrapid solidificationannealingmartensitic transformationdamping capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對40%冷輥壓Ti50Ni40Cu10合金、Ti51Ni49 melt spinning薄帶及快速凝固鑄造Ti50Ni40Cu10合金進行再結晶退火處理,探討晶粒細化後退火對其相變態行為之影響。研究結果可知,短時間之退火主要用於冷加工殘留應力、缺陷及熱應力之消除;長時間者主要用於晶粒之回復、再結晶及晶粒成長。冷輥壓加工40%之Ti50Ni40Cu10合金經退火處理後,其tanδ極大值皆能超過0.04,符合高制振能合金之要求,其中以 650oC×72hrs之試片為最大。Ti51Ni49 melt spinning薄帶經適當退火處理後會產生多階相變態,其成因和薄帶中同時存在大、小晶粒有關,而退火處理後大晶粒之成長有限,主要為小晶粒之成長。40%冷輥壓及快速凝固鑄造Ti50Ni40Cu10合金之晶粒成長指數隨退火溫度增加而增加,並符合Arrhenius熱活化原子擴散模式,其晶粒成長活化能分別為306.47kJ/mol及1653.4kJ/mol。由本研究結果可知,退火條件對相變態行為影響之主要參數為溫度。
Effects of grain size on transformation behavior and mechanical property of (1) Ti50Ni40Cu10 SMA thin plates with 40% cold rolling, (2) Ti51Ni49 SMA melt-spun ribbons and (3) Ti50Ni40Cu10 SMA rapid solidificated rods with recrystallization annealing are studied. When the annealing time is short, thermal energy contributes to release the residual stress and to eliminate the lattice defects. On the other hand, thermal energy contributes to recovery, recrystallization and grain growth when the annealing time is long. DMA test indicates that 40% cold-rolled Ti50Ni40Cu10 plates have high damping capacity (tanδ>0.04), especially for the plate annealed at 650oC×72hrs. Because of the coexistence of different size grains, Ti51Ni49 melt spinning ribbons reveal multiple martensitic transformation steps. During the annealing small grains show obviously growth but large ones don’t. Both 40% cold-rolled thin plates and rapid solidificated rods have the same property, i.e. their grain growth exponents increase with the increasing annealing temperature and they are consistent with Arrhenius diffusion model having the grain growth activation energies 306.47kJ/mol and 1653.4kJ/mol, respectively. According to this study, the major parameter affecting transformation behavior is the annealing temperature.
中文摘要………………………………………………………i
英文摘要……………………………………………………iii
第一章 前言…………………………………………………1
第二章 文獻回顧……………………………………………7
2-1 形狀記憶合金簡介………………………………………………7
2-1-1 形狀記憶效應………………………………………………9
2-1-2 擬彈性效應…………………………………………………15
2-2 TiNi二元形狀記憶合金…………………………………………18
2-2-1 TiNi二元形狀記憶合金之各相與結晶構造………………18
2-2-2 TiNi二元形狀記憶合金之力學特性………………………20
2-3 TiNiCu三元形狀記憶合金………………………………………25
2-4 軋延製程…………………………………………………………27
2-5 快速凝固製程……………………………………………………30
2-6 再結晶退火………………………………………………………31
2-7 材料的制振能與阻尼性質………………………………………33
2-7-1 阻尼的種類…………………………………………………33
2-7-2 材料的阻尼機構與現象……………………………………35
2-7-3 麻田散體變態的阻尼特性…………………………………40
2-7-4 TiNi基形狀記憶合金的低頻內耗特性……………………41
2-7-5 頻率與材料阻尼的關係……………………………………42
2-7-6 阻尼值的計算………………………………………………43
第三章 實驗方法及步驟…………………………………65
3-1 合金配置及熔煉…………………………………………………66
3-2 輥壓方法及設備…………………………………………………67
3-2-1 熱輥壓………………………………………………………68
3-2-2 冷輥壓………………………………………………………69
3-3 快速凝固方法及設備……………………………………………70
3-3-1 快速凝固鑄造製程…………………………………………70
3-3-2 melt spinning製程………………………………………71
3-4 再結晶退火熱處理方法及設備…………………………………72
3-5 DSC量測…………………………………………………………73
3-6 DMA量測…………………………………………………………74
3-6-1 動態機械分析的意義………………………………………75
3-6-2 動態機械分析的原理………………………………………76
3-6-3 儀器架構……………………………………………………77
3-6-4 使用單懸臂或雙懸臂時的考量……………………………78
3-6-5 一般樣品的製備要點………………………………………78
3-7 EPMA成分分析……………………………………………………79
3-8 顯微組織觀察……………………………………………………79
3-9 XRD晶體結構分析………………………………………………80
3-10 硬度量測………………………………………………………81
第四章 實驗結果及討論…………………………………97
4-1 Ti50Ni40Cu10冷輥壓試片…………………………………………97
4-1-1 DSC量測結果………………………………………………97
4-1-2 DMA量測結果………………………………………………104
4-1-3 顯微組織觀察結果………………………………………108
4-1-4 硬度量測結果……………………………………………110
4-2 melt-spun Ti51Ni49薄帶試片…………………………………111
4-2-1 DSC量測結果………………………………………………112
4-2-2 顯微組織觀察結果………………………………………121
4-3 Ti50Ni40Cu10快速凝固鑄造片…………………………………122
4-3-1 DSC量測結果………………………………………………123
4-3-2 顯微組織觀察結果………………………………………127
4-3-3 硬度量測結果……………………………………………128
第五章 結論………………………………………………207
第六章 參考文獻…………………………………………211
1. 林新智, 國立台灣大學材料科學與工程學研究所博士論文,民國81年, p18.
2. L.C. Chang and T.A. Read, Trans. AIME., 189 (1951) 47.
3. T. Tadk, K. Otsuka and K. Shimizu, Ann. Rev. Mater. Sci, 18 (1988) 25.
4. H. Kessler and W. Pitsch, Acta Met. 15 (1967) 401.
5. T. Saburi, S. Nenno and C.M. Wayman, ICOMAT-79 (1979) 619.
6. A. Nagasawa, K. Enami, Y. Ishino, Y. Abe and S. Nenno, Scripta Metall., 8 (1974) 1055.
7. T.Saburi and S. Nenno, Scripta Metall., 8 (1974) 1363.
8. T.A. Schroder and C.M. Wayman, Scripta Metall., 11 (1977) 225.
9. K. Enami A. Negasawa and S. Nenno, Scripta Metall., 9 (1975) 941.
10. L. Delaey and J. Thienel, in:Shape Memory Effects in Alloys, (J. Perkins, ed.), Plenum Press, New York, 1975, p.341.
11. T. Saburi and S. Nenno, in:Proc. Int. Conf. On Solid to Solid Phase Transformations, ASM, Metals Park, Ohio, 1982, p.1455.
12. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1293.
13. M. Nishida and T. Honma, Scripta Metall., 18 (1984) 1299.
14. M. Nishida and C.M. Wayman, Scripta Metall., 18 (1984) 1389.
15. K. Otsuka and K.Shimizu, Int. Met. Rev, 31 (1986) 93.
16. M. Nishida and T.Honma, ICOMAT-82 43 (1982) C4-225.
17. T. Honma, Proc, Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin, China, (1986) 709.
18. T. Honma, ICOMAT-86 (1986) 709.
19. K. Otsuka and K. Shimizu, Metals Forum, 4 (1981) 142.
20. K. Otsuka and C.M. Wayman, in: Reviews on the Deformation Behavior of Materials, (P. Feltham ed.), Israel, 1977, p.81.
21. K. Otsuka, in: Proc. Int. Conf. On Solid to Solid Phase Transfor- mations, TMS-AIME Pittsburgh, Pa. (USA), 1981, p.1267.
22. K. Otsuka, X. Ren, Intermetellics, 7, 1999, 511.
23. TB Massalski, H. Okamoto, PR. Subramanian, L. Kacprzak. Editors. Binary alloy phase diagrams, 2nd ed., vol. 3. Ohio: ASM International, 1990, 2875.
24. C. M. Jackson, H. J. wagner, R. J. wasilewski, Nasa-SP 5110, 1972.
25. K. Ostuka, S. Sawamura and K. Shimizu, Phys. Stat. Sol., 5 (1971) 457.
26. O. Matsumoto, S. Miyaaki, K. Ostuka and H. Tamura, Acta Mater., 35 (1987) 2137.
27. K.M. Knowls and K.A. Smith, Acta Mater., 29(1981) 101.
28. D.P. Dautovich, G.R. Purdy, Can. Matall., 6,1972, 115.
29. D. Bradley, J. Acoust, Soc. Am., 37, 1965, 700.
30. C.M. Wayman, I. Cornelis, Scripta Metall., 6,1972, 115.
31. H.C. Ling, R.Kaplow, Met. Trans., 11, 1980, A77.
32. D.P. Dautovich and G.R. Purdy, Can. Metal. Quart, 4(1965) 129.
33. F.E. Wang, B.F. Desavage and W.I. Buehler, J. Appl. Phys., 39 (1968) 2166.
34. G.D. Sandrock, A.J. Perkin and R.F. Hechemann, Met. Trans., 2 (1971) 2769.
35. O. Mercier and K.N. Melten, Acta Met., 27 (1979) 1467.
36. G.D. Sandrock, A.J. Perkin and R.F. Hechemann, Met. Trans., 2 (1971) 2769.
37. H.C. Ling and R. Kaplow, Met. Trans., 12A (1981) 2101.
38. E. Goo and R. Siinclair, Acta Met., 33 (1985) 1717.
39. S.K. Wu and H.C. Lin, Scripta Met., 25 (1991) 1529.
40. C.M. Hwang, M. Meichle, M.B. Salamon and C.M. Wayman, Phys. Mag., A, 47 (1983) 31.
41. K.H. Eckelmeyer, Scripta Mater., 10 (1076) 677.
42. J.E. Hanlon, S.R. Butler and R.J. Wasilewski, Trans. Metall. Soc. AIME, 239 (1967) 1323.
43. T. Saburi, T. Tatsumi and S. Nenno, J. de Physique (Supp.) 43 (1982) C4-261.
44. T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM., 28 (1987) 883.
45. S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986) 275.
46. M. Nishida and C.M. Wayman, Metallography, 21(1988) 275.
47. G. Airoldi, G. Bellini and C,D, Franceso, J. Phys. F, 14 (1984) 1983.
48. H.S. Lin, S.K. Wu, T.S. Chou and H.P. Kuo, Acta Metall. Mater., Vol. 39 No.9 (1991), p2069~2080.
49. T. Saburi, Shape Memory Materials. Edited by K. Otsuka and C.M. Wayman, Cambridge University press. 1998,58.
50. C.M. Wayman, Proc. ICOMAT-89, Sydney, Australia, 1989, 519.
51. 黃兵民,哈爾濱工業大學博士論文,1997.
52. C.S. Zhang, Y.Q. Wang, J.X. Cheng, L.C.Zhao, Proc. First International Conference on Shape Memory and superelastic Technologies, California, 1994,383.
53. 黃兵民,蔡傳,趙連城,宇航材料工藝,27(5), 1997, 24.
54. T. Saburi, S. Nenno, Proc. Intern. Conf. On Solid-Solid Phase Transformations, Pittsburgh, 1981 1455.
55. T. Saburi, M. Yoshida, s. Nenno, Scr. Metall., 18, 1984, 363.
56. S. Miyazaki, S. Kimura, K. Otsuka, Y. Suzuki, Scr. Metall., 18, 1984, 833.
57. T. Saburi, Proc. MRS Int. Mtg. On Adv. Mats., Tokyo, Vol. 9 (Shape Memory Mater.), 1989,77.
58. T. Tadaki, C.M. Wayman, Scripta Metall., 14, 1980, 911.
59. Y.F. Zheng, B. M. Huang, J. X. Zhang, L.C. Zhao, Materials Science and Engineering A, 279, 2000, 25.
60. K.N. Melton and O. Mercier, Scripta Met. 12 (1978) 5.
61. K.N. Melton and O. Mercier, Met. Trans. 9A (1978) 1487.
62. O. Mercier and K.N. Melton, Met. Trans. 10A (1979) 387.
63. R.H. Bricknell, K.N. Melton and O. Mercier, Met. Trans. 10A (1979) 693.
64. O. Mercier, E. Torok and B. Tirbonod, ICOMAT-79, p702.
65. R.H. Bricknell and K.N. Melton, Met. Trans. 11A (1980) 1541.
66. T. Tadaki and C.M. Wayman, Metallography, 15 (1982) 233.
67. T. Tadaki and C.M. Wayman, Metallography, 15 (1982) 247.
68. T. Saburi, T. Komatsu, S. Nenno and Y. Watanabe, J. Less. Common Metals 118 (1986) 217.
69. Y. Shugo and T. Honma, Bull. Res. Inst. Miner. Dress. Met. 43 (1987) 117.
70. S. Miyazaki, I. Shiota, K. Otsuka and H. Tamura, Proc. MRS Int. Mett. on Adv. Mater. Shape Memory Materials, (1988) p153.
71. T. Saburi, T. Takagaki, S. Nennoo and K. Koshino, ibid (1988) p147.
72. T. Saburi, Y. Watanabe and S. Nenno, ISIJ International, 29 (1989) 405.
73. T.H. Nam, T. Saburi, Y. Kawamura and K. Shimizu, Mat. Trans. JIM, 31 (1990) 262.
74. T.H. Nam, T. Saburi and K. Shimizu, Mat. Trans. JIM, 31 (1990) 959.
75. T.H. Nam, T. Saburi, Y. Kawamura and K. Shimizu, Mat. Trans. JIM, 31 (1990) 1050.
76. T.H. Nam, T. Saburi and K. Shimizu, Mat. Trans. JIM, 33 (1991) 814.
77. B.S. Murty, S. Ranganathan and M. Mohan Rao, Mat. Sci. Eng. 149A (1992) 231.
78. Y. Furuya, M. Matsumoto, H. Kimura, K. Aoki and T. Masumoto, Mat. Trans. JIM 31 (1990) 504.
79. L. Chang and D.S. Grummon, Scripta Met. 25 (1991) 2079.
80. W.J. Moberly, J.L. Proft, T.W. Duerig and R. Sinclair, Mater. Sci. Forum, 56 (1990) 605.
81. Y. Watanable, T. Saburi, Y. Nakagawa and S. Nenno, J. JIM 54 (1990) 861.
82. T. Onda, Y. Bando, T. Ohba, K. Otsuka, Mater. Trans. JIM, 33 (1992) 354.
83. Y.Kawaguchi, K.Katsube, M.Murahashi, Y.Yamada; Wire Journal International, 121 (1991) 53.
84. Sakae Saito, Takashi Wachi and Shuij Hanada ; Materials Science and engineering, A161 (1993), p91-96.
85. 相場滿等, 日本金屬學會會報第31卷, 第六號, p541 (1992).
86. Ikuta Koj; Proceeding-IEEE Micro Electro Mechanical System (1994), p355-360.
87. Zhang Yunshi; Acta. Metall.urgica Sinica, v6B, n4 (1993), p263-265.
88. Katsutoshi, Y.Masaaki; Proceeding-IEEE Micro Electro Mechanical System (1990), p217-221.
89. J.C.Hey, A.P. Jardine; Materials Science and Engineering A188 (1994), p291-300.
90. P.Filip, K. Mazanec; Materials Science and Engineering A174 (1994), L41-L43.
91. H.C.Lin, S.K.Wu; Acta metal. Vol. 42 No.5 (1994), p1623~1630.
92. H.C.Lin, S.K.Wu; Metallurgical Trans. Vol. 24A (1993), p293-299.
93. D.Y.Li,X.F.Wu, T.Ko; Acta metall. Mater Vol. 38 No.1 (1990), p19-24.
94. M.T.Yeh, H.P.Kao and S.E.Hsu; unpublished research, M R&D C, CSIST.
95. 鈴木雄一;日本金屬學會會報,第24卷,第1號 (1985), p41~44.
96. C.M.Jackson, H.J.Wanger, and R.J.Wasilewski; NASA-SP5110, 55-NITIONL Report.
97. Rozner, A.G; Buehler, W.J.:Low Temperature Deformation of the TiNi Intermetallic Compound, Rept, NOLTR.66~38, U.S. Naval Ordnance Laboratry, Mar, 1, 1996.
98. 鈴木雄一著; 形狀記憶合金發展現況(林隆博士著).
99. J.E. Flinn, Rapid Solidification Technology for Reduced Consumption of Strategic Materials, Noyes Publications, 1985, p30.
100. A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials - Preparation, Properties, and Applications, Springer, 2001, p12.
101. Furuya Y, Matsumoto M, Kimura H, Aoki K, Masumoto M. Mater Trans JIM 1990;31:504.
102. Furuya Y, Matsumoto M, Kimura HS, Masumoto T. Mater Sci Eng A 1991;147:L7.
103. Saravanan V, Khantachawana A, Miyazaki S. Mater Trans 2004;45:208.
104. Xie ZL, VanHumbe eck J, Liu Y, Delaey L. Scripta Mater 1997;37:363.
105. Rosner H, Schlosmacher P, Shelyakov AV, Glezer AM. Scripta Mater 2000;43:871.
106. Rosner H, Schlosmacher P, Shelyakov AV, Glezer AM. Acta mater 2001;49:1541.
107. Rosner H, Schlosmacher P, Shelyakov AV, Glezer AM. J Phys IV France 2001;11:Pr8-333.
108. Liu Y. Mater Sci Eng A 2003;354:286.
109. Khantachawana A, Mizubayashi H, Miyazaki S. Mater Trans 2004;45;214.
110. 佐分利敏雄, 捻也宗次, 西本泰憲, 錢谷 誠; 鐵和鋼,(1986)第6號, p37~44.
111. 本橋嘉信, 星屋泰二, 岡本芳三, 大森宮次郎; 日本金屬協會誌,第55卷第2號 (1991), p132~140.
112. John S.Madsen and A.Peter Jardine; Scripta Metallurgical et Materialia, Vol.30,No.9, p1189-1194 (1994).
113. J.Busch,A.D.Johnson,C.H.Lee and D.A.Stevenson; J.Appl.Phys., 68, p6224 (1990).
114. W.J.Moberly, J.D.Busch, A.D.Busch, A.D.Johnson and M.H.Berkson; MRS Symp. Proc.,230:85-90 (1991).
115. 陳永松, 國立台灣大學材料科學與工程學研究所碩士論文,民國88年, p99.
116. B.J. Lazan, “Damping of Materials and Members in Structural Mechanics”, Pergamon Press, New York (1968).
117. I. G. Ritchie, Z. L. Pan, K. W. Sprungmann, H. K. Schmidt and R. Dutton; Can. Metal. Quart., 26 (1987) 239.
118. I. G. Ritchie and Z. L. Pan; Met. Trans. A., 22 (1991) 607.
119. A. S. Nowick and B. S. Berry, “Anelastic Relaxation in Crystalline Solids”, Academic Press, New York.
120. C. Zener, ‘Elasticity and Anelasticity of Metals”, The University of Chicago Press, Chicago, Illionois (1948).
121. A. V. Granato and K. Lucke; J. Appl. Phys., 27 (1956), 583, 789.
122. W. Dejonghe, R. De Batist and L. Delaey; Scripta Metall., 101 (1976) 1125.
123. H.C. Lin, S.K. Wu and Y.C. Chang, “Damping Characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 Ternary Shape Memory Alloys”, Met. Trans., 26A (1995) 851.
124. J .F. Delorme, R. Schmid, M. Robin, P. Gobin, J. Phys. 32 (1971) C2–101.
125. K. Iwasaki and R.R. Hasiguti, Trans. JIM 28 (1987) 363.
126. R.R. Hasigit and K. Iwasaki, J. Appl. Phys. 39 (1968) 2182.
127. K. Metton and O. Mercier, Acta Met 29 (1980) 393.
128. R.L. Wegal and H. Walther 1935 Physics 6, p141~157; “Internal dissipation in Solids for Small Cyclic Strains”.
129. H.C. Lin, S.K. Wu and M.T. Yen, “Damping Characteristics of TiNi Shape Memory Alloys”, Met. Trans., 24A (1993) 2189.
130. G.E. Dieter, “Mechanical Metallurgy”, 3rd ed., Mc Graw-Hill, New York, 1986, p436.
131. 李國維, 國立台灣大學機械工程學研究所碩士論文,民國84年, p115
132. F.J. Humpnreys and M. Hatherly; in: “Recrystallization and Related Annealing Phenomena”; Elsevier Science Inc., (1995) p186~187
133. 張洸豪, 國立台灣大學機械工程學研究所碩士論文,民國93年, p80~82
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top