跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳龍
研究生(外文):Chia-Lung Wu
論文名稱:AM350不鏽鋼箔片之微電漿銲接與熱處理研究
指導教授:顧鈞豪
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:155
中文關鍵詞:半沃斯田鐵系析出硬化行不鏽鋼微電漿銲接波紋片波紋管
外文關鍵詞:AM350PAWbellows
相關次數:
  • 被引用被引用:1
  • 點閱點閱:416
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究有兩大部分,第一部分是利用微電漿對厚度僅有0.076mm
之AM350 不鏽鋼箔片進行銲接,並求出AM350 箔片微電漿銲接製
程之最佳銲接參數,另外再搭配不同的銲前、銲後熱處理,可獲得
AM350 箔片銲件最佳熱處理條件。第二部分的研究則是進行AM350
波紋片之模擬試銲,並以銲接峰值電流為變數,以期求得最佳的
AM350 波紋片銲接參數。
研究結果顯示,當銲接峰值電流為2.5A,而銲接走速為7.5in/min時,可獲得最佳品質的AM350 不鏽鋼箔片銲件。另外,不論銲前熱
處理狀態為何,AM350 箔片銲件之機械性質主要取決於銲後熱處
理;若銲件未進行銲後熱處理,其拉伸強度呈現最低(僅約100MPa
左右),且熔融區內δ→γ的相變態會因為高達4.52 ×104 °C /sec 的冷卻速率,而具有Massive Transformation 的特性;若銲前及銲後皆施行SCT850 時效處理(455℃,持溫3 小時)之箔片銲件,其拉伸強度值最高(158MPa),但延伸率僅有2∼3%;當銲後時效溫度提升至535℃以上時,箔片銲件拉伸強度值會隨著之降低,但具有相當不錯的延伸率(約6∼8%)。
對於波紋片銲件的研究成果,當銲接峰值電流設定在4A~5A 間時,具有圓弧狀的銲道外觀,可獲得最佳的銲接品質。
This investigation included two major parts. The first was to develop the optimal welding parameters and heat treatment conditions for AM350 stainless steel foil welds with a thickness of 0.076mm. The second was to simulate the plasma arc welding process and establish the appropriate welding parameters for AM350 bellow weldments.
Results of this investigation revealed that AM350 foil welds would have the optimum qualities as the peak current and welding speed were fixed at 2.5A and 7.5in/min respectively. The tensile properties of foil
specimens, regardless of their former heat treatment conditions, were determined by the post-heat treatment. The foil weldments without post-heat treatment had the minimum tensile strength, only 100MPa, and the solid-state phase transformation of δ→γwas found to be via massive transformation due to its extremely high cooling rate of
4.52 ×104 °C /sec . The foil specimens subjected to the SCT850 heattreatment before and after welding performed the highest tensile strength of 158MPa, but with a quite low elongation. The elongation of the foil welds would be substantially increased as the aging temperature was raised to 535℃.
For bellow welds, while the peak current was set between 4A and 5A, the shape of the weld pool would appear a continuous circular, which could homogeneously distribute the stress on the welds.
中 文 摘 要...................................................................................................................i
Abstract ...........................................................................................................................i
目 錄.............................................................................................................................i
圖 目 錄...................................................................................................................iv
表 目 錄..................................................................................................................xv
第一章 前言..................................................................................................................1
第二章 基本理論與文獻回顧......................................................................................4
2–1 AM350 半沃斯田鐵系析出硬化型不鏽鋼之物理冶金特性.......................4
2–2 AM350 固化理論.........................................................................................11
2–3 銲接熱裂縫的成因.....................................................................................19
2–3–1 銲接金屬區(Weld Metal)熱裂縫理論......................................19
2–3–2 熱影響區熱裂縫理論(Heat–Affected Zone Liquation Cracking)
......................................................................................................................23
2–3–3 肥粒鐵對於AM350 不鏽鋼與熱裂縫的影響...............................23
2–3–4 AM350 銲接特性 .........................................................................27
2–4 微電漿銲接及基本原理.............................................................................28
2–4–1 電漿銲接基本原理..........................................................................29
2–4–2 電漿電弧銲之銲接參數..................................................................32
第三章 實驗方法與步驟............................................................................................34
ii
3–1 實驗步驟流程圖..........................................................................................34
3–2 實驗材料......................................................................................................34
3–3 微電漿銲接設備與夾治具的設計..............................................................34
3–3–1 AM350 鋼箔之法蘭式微電漿銲接.................................................34
3–3–2 AM350 鋼箔之波紋片微電漿銲接.................................................35
3–4 熱處理規劃..................................................................................................41
3–5 顯微組織觀察..............................................................................................44
3–5–1 光學顯微組織觀察..........................................................................44
3–5–2 掃瞄式電子顯微鏡顯微組織觀察..................................................44
3–5–3 電子探針微區分析儀......................................................................44
3–6 X光繞射分析...............................................................................................45
3–7 機械性質.....................................................................................................45
3–7–1 拉伸試驗與拉伸標準試片模具製作..............................................45
第四章 結果與討論....................................................................................................47
4–1 AM350 原材與熱處理分析.........................................................................47
4–1–1 AM350 原材成分分析.....................................................................47
4–1–2 AM350 原材與進行熱處理後之顯微結構及X光繞射分析結果..47
4–1–3 AM350 原材及經不同熱處理後之拉伸試驗.................................59
4–2 法蘭式箔片銲接參數之決定與銲接品質.................................................64
4–2–1 銲接峰值電流對銲道寬度的影響.................................................64
4–2–2 銲速對銲道寬度的影響.................................................................71
4–2–3 法蘭式箔片微電漿銲接參數決定之拉伸試驗.............................73
iii
4–2–4 法蘭式箔片銲件之銲前與銲後熱處理試驗.................................77
4–3 波紋片微電漿銲接與銲接品質...............................................................133
4–3–1 波紋片銲道形狀分析....................................................................136
4–3–2 峰值電流對波紋片銲道熔深的影響............................................142
4–3–3 波紋片銲件顯微結構觀察............................................................144
第五章 結論..............................................................................................................147
未來研究方向............................................................................................................149
第六章 參考文獻....................................................................................................150
1 葉哲政,”液壓成形技術在波紋管之應用”,金屬工業36 卷3 期,p.69.
2 B.R. Holbert, JR., T. M. Mustaleski, K. D. Nicklas and T. H. Thrasher,
“Fabricating and Testing Stainless steel bellows”, Weld. J., May, 1989
3 ASM Specialty Handbook,Stainless steel,ASM International Materials Park
4 “Ferrous Alloys”, Aerospace Structural Metal Handbook, code:1504
5 Donald Peckner, I. M. Bernstein, “Handbook of stainless steels”, McGraw-Hill
Book Company.
6 王錫欽等,”鋼鐵材料設計與應用”,中國礦冶工程學會,p.10-17
7 B. Baroux, Ph Maitrepierre and B. Thomas, “Mechanism or intergranular
brittleness in martensitic stainless steels containing 13% chromium”, Stainless
steels; 84 Proceeding of the conference on 3-4 September 1984, The Institute
of Metals, London.
8 G. Aggen, “Phase Transformations and Heat Treatment Studies of a Controlled
Transformation Stainless Steel Alloy”, Dr. Eng. Sc. Thesis, Rensselaer
Polytechnic Institute, Aug. 1963
9 T. G. Gooh, “Weld Decay in Austenitic Stainless Steels”, The Welding Institute,
1975
10 “Armco PH 13-8Mo Stainless Steel”, Product Data Bulletin S-24, Armco, Inc.,
Sept 1966
11 American Society for Metals. Metals Handbook, 8th ed., vol. 8, p. 424. Metals
Park, Ohio.
12 Schaeffler, A. L., Constitution diagram for stainless steel weld metal, Metal
Progress, 56(11), 1949, p.680.
151
13 W. T. Delong, “Ferrite in Austenitic Stainless Steel weld Metal”, Weld. J., July,
1979, p. 45.
14 F. C. Hull, “Delta Ferrite and Martensite Formation in Stainless Steels”,
Supplement 7 to the Steel Casting Handbook, Steel Founders’ Society of
America, Des Plaines, III
15 E. A. Schoeffer, “Welding of High Alloy Castings”, Weld. J., 52(5), 1973, p.
193-s.
16 N. I. Kakhovskii, V. N. Lipodaev and G. V. Fadeeva, “The Arc Welding of
Stablw Austenitic Corrosion-Resisting Steels nad Alloys”, Avt. Svarka.l, No. 5,
1980, p. 55.
17 D. L. Olson, “Prediction of Austenitic Weld Metal Microstructure and
Properties”, Weld. J., Oct., 1985, p. 281-s
18 ö. Hammar and U. Svensson, “Solidification and Castings of Metals”, London,
The Metals Society, 1979, p. 401.
19 N. Suutala, T. Takalo, and T. Moisio, “ Austenitic Solidification Mode in
Austenitic Stainless Steel Welds”, Metall. Trans. A, vol. 10A, Aug., 1979, p.
1173.
20 N. Suutala, T. Takalo, and T. Moisio, “ Single-Phase Ferritic Solidification
Mode in Austenitic Stainless Steel Welds”, Metall. Trans. A, vol. 10A, Aug.,
1979, p. 1183.
21 N. Suutala, T. Takalo, and T. Moisio, “ The Relationship Between Solidification
and microstructure in Austenitic and Austenitic-Ferritic Stainless Steel Welds”,
Metall. Trans. A, vol. 10A, April, 1979, p. 512.
22 N. Suutala, T. Takalo, and T. Moisio, “ Ferritic-Austenitic Solidification mode
in Austenitic Stainless Steel Welds”, Metall. Trans. A, vol. 11A, May, 1980, p.
717.
23 S. A. David, “Ferrite Morphology and Variations in Ferrite Content in
Austenitic Stainless Steel Welds”, Weld. J., April, 1981, p. 63-s
24 J. K. Lai, B. Nath, and R. D. Townsend, “Variations in Delta-Ferrite Content
152
and Morphology in a Multipass Type 316 Weldment and Their Effect on Creep
Rupture Properties”, British Nuclear Energy Society, Conference on welding
and Fabrication in Nuclear Industry, London, April, 1979
25 J. C. Lippold and W. F. Savage, ”Solidification of Austenite Stainless Steel
Weldments:Part 1– A proposed Mechanism”, Weld. J., Dec., 1979, p. 362-s
26 J. C. Lippold and W. F. Savage, ”Solidification of Austenite Stainless Steel
Weldments:Part 2– The Effect of Alloy Composition on Ferrite Morphology”,
Weld. J., Feb., 1980, p. 48-s.
27 J. A. Brooks, J. C. Williams, and A. W. Thompson, “Microstructural Origin of
the Skeletal Ferrite Morphology of Austenitic Stainless Steel Welds”, Metall.
Trans. A, vol. 14A, July, 1983, p. 1271.
28 N. Suutala, T. Takalo, and T. Moisio, “Technical Note: Comment on the
Transformation δ→γ by a Massive Mechanism in Austenitic Stainless Steel”,
Weld. J., May, 1981, p. 92-s.
29 Principles and Technology of the Fusion Welding of Metals, Vol. 1.
Mechanical Engineering Publishing Co., Peking, China 1979.
30 J. C. Borland, “Generalized Theory of Super-Solidus Cracking in Welds (and
Casting)”, Brit. Weld. J., 7(8), 1960, p. 508.
31 Smith, C. R.: Trans. AIME, 175: 15, 1948.
32 R. Scherer, G. Riedrich, and, H. Hougardy, Welding rod. U.S. patent 2240672,
May 6, 1941.
33 J. C. Borland, “Suggested Explanation of Hot Cracking in Mild and Low Alloy
Steel Welds”, Brit. Weld. J., (8)11, 1961, p. 526-540.
34 I. Masumoto, K. Tamaki, and M. Kutsuna, Trans. JWS, 41(11), 1972, p.1306.
35 E. Schurman, and I. Brauchmann, Archiv fur das Eisenhuttenwesen, Nov. 1979,
48, p.3.
36 R. M. Curran, and A. W. Rankin, “Welding Type 347 Stainless Steel for 1100℉
Turbine Operation”, Weld. J., 34(3), 1955.
37 Y. Arata, F. Matsuda, and S. Katayama, Japanese Weld. Res. Ins. Trans, 5(2),
153
p.35.
38 F. C. Hull, “Effect of Delta Ferrite on the Hot Cracking of Stainless Steel”,
Weld. J., 46(9), 1967, p. 399-s.
39 C. D. Lundin, W. T. DeLong, and D. F. Sponds, “Ferrite-fissuring Relationship
in Austenitic Stainless Steel Weld Metals, Weld. J., 54(8), p.241-s.
40 F. Matsuda, H. Nakogawa, T. Uehara, S. Katayama, and Y. Arata, Japanese
Weld. Res. Ins. Trans, 8(1), 1979, p.105.
41 H. Their, DVS-BER, 41, 1976, p.100.
42 J. A. Brooks, W. Thompson, and j. C. Willams, “A Fundamental Study of the
Beneficial Effect of Delta Ferrite in Reducing Weld Cracking”, Weld. J., March,
1984, p. 71-s.
43 V. P. Kujanpää, S. A. David, and C. L. White, “Formation of Hot Cracks in
Austenitic Stainless Steel Welds- Solidification Cracking”, Weld. J., Aug., 1986,
p. 203-s.
44 J. M. Vitek, and S. A. David, “The Sigma Phase Transformation in Austenitic
Stainless Steels”, Weld. J., April, 1986, p. 106-s.
45 T. P. Gill, M. Vijayalakshmi, J. B. Gnanamoorthy, and K. A. Padmanabhan,
“Transformation of Delta-Ferrite during the Postweld Heat Treatment of Type
316L Stainless Steel Weld Metal”, Weld. J., May, 1986, p. 122-s.
46 W. A. Baeslack, D. J. Duguette, and W. F. Savage, Weld. J., 58, 1979, p. 83-s.
47 P. G. Manning, D. J. Duguette, and W. F. Savage, Weld. J., 59, 1980, p. 260-s.
48 R. G. Thomas, “The Effect Delta Ferrite on Creep Rupture Properties of
Austenitic Weld Metals”, Weld. J., 58(3), 1978, p. 81-s.
49 Sindo Kou, “Welding Metallurgy”, Jon Wiley & Sons.
50 Welding Handbook: Welding process, 8th edn, vol. 2, AWS, 1991.
51 Welding Handbook: Weldnig Process- Arc and Gas Welding and Cutting,
Brazing, and Soldering, 7th edn, vol. 12, AWS, 1978.
52 ASTM E345, “Standard Test Methods for Tension Testing of Metallic Materials”,
1990.
154
53 J. A. Brooks, M. I. Baskes, and F. A. Greulich, “Solidification Modeling and
Slid-Stat Transformations in High –Energy Density Stainless Steel Welds”,
Metall. Trans. A, vol. 22A, April., 1991, p. 915.
54 J. W. Elmer, S. M. Allen, and T. W. Eagar, “Microstructural Development
during Solidification of Stainless Steel Alloys”, Metall. Trans. A, vol. 20A, Oct.,
1989, p. 2117.
55 S. A. David, J. M. Vitek, and T. L. Hebble “Effect of Rapid solidification on
Stainless Steel Weld Metal microstructures and Its Implications on Schaeffler
Diagram”, Weld. J., Oct., 1987, p. 289-s.
56 J. N. Dupont and A. R. Marder, “Thermal Efficiency of Arc Welding
Processes”, Weld. J., Dec., 1995, p. 406s-416s,.
57 D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys,
2nd,
58 Floreen, S.: The Properties of Low Carbon Iron-Nickel Chromium Martensites,
Trans. Am. Inst. Min. Metall. Pet. Eng., vol. 236, 1966, pp. 1429-1440,.
59 Bechtoldt, C. J., and H. C. Vacher: J. Res., Nat., Bur. Stand., Vol. 58, no. 1,
1953, p. 7,.
60 Wiegand, H., Doruk, M.: Einfluβ von Kohlenstoff und Molybdän auf die
Auscheidungsvorgänge, besonders auf die Bildung intermetallischer Phasen in
austenitischer Chrom-Nickel-Stählen. Arch. Eisenhüttenwes. 33, 1962,
p.559-556.
61 Their, H., Bäumel, A. Schmidtmann, E.:Einfluβ von Stickstoff auf das
Auscheidungsverhalten des stahles X 5 CrNiMo 17 13. Arch. Eisenhüttenwes.
40, 1969, p.333-339.
62 Schabereiter, H., Folkhard, E., Ablasser, F., Ornig, H., Neff, F.: Schweiβ
austenitischer Werkstoffe bein Bau groβer Kernreaktoren. Berg-u. hüttenm. Mh.
117, 167-181.
63 Schabereiter, H., Rabensteiner, G.: Die Problematik der Spannungsarmglü
155
hungen von austenitischem Schweiβgut. Z. Schweiβtechn. (Basel) 63, 1976, p.
214-230.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top