(3.235.25.169) 您好!臺灣時間:2021/04/20 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉建宏
研究生(外文):Jian-Hong Liu
論文名稱:微弧氧化與水熱法於鈦板之氫氧基磷酸鈣披覆
論文名稱(外文):Deposition of Hydroxyapatite on Titanium Plate by Microarc Anodizing and Hydrothermal Treatment
指導教授:林招松林招松引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:161
中文關鍵詞:微弧放電氧化水熱處理氫氧基磷酸鈣橫截面微結構
外文關鍵詞:microarc discharging oxidationhydrothermal treatmentcross-sectional microstructure
相關次數:
  • 被引用被引用:5
  • 點閱點閱:242
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以微弧氧化法於鈦板成長含鈣及磷之氧化膜,透過橫截面TEM解析其微結構,並探討後續水熱處理析出氫氧基磷酸鈣的機制。在β-甘油磷酸鈉及醋酸鈣電解液中,以定電流方式將鈦板陽極極化至350V,發現有微弧放電反應,同時鈦板表面生成含鈣及磷之多孔氧化層,其結晶相主要為銳鈦礦。經微弧放電生成的氧化膜呈現雙層結構,外層包括鈣/磷的結晶質與非晶質混和區域,非晶質區含有高含量的鈣及磷;內層為一多孔層,這些孔會隨著陽極膜向底材擴展而合併,形成氣孔層。電解液中β-甘油磷酸鈉含量的增加導致微弧氧化膜中鈣及磷含量的增加,但同時降低氧化膜鈣磷比與鍍層結晶程度。在磷酸根溶液中添加醋酸根和氫氧根皆可促進微弧放電反應,同時此兩種陰離子會使氧化膜產生不同形貌以及結晶結構。微弧放電成長的氧化膜在300℃進行2小時之水熱處理,無法獲得高結晶度之氫氧基磷酸鈣,添加碳酸氫鈉於水熱處理溶液後,析出高結晶性之單相氫氧基磷酸鈣。
Calcium and phosphorus-containing oxide film was made on commercially pure titanium plate using a microarc discharging oxidation method. The microstructure of the oxide film was characterized by cross-sectional transmission electron microscopy (TEM). Hydrothermal treatment was then performed on the oxide film for the precipitation of hydroxyapatite. Upon galvanostatic anodizing up to 350V at a current density of 50 mA/cm2 in the electrolyte consisting of β-glycerophosphate disodium(β-GP) and calcium acetate, microarc discharge was observed on titanium plates, leading to the formation of an oxide film mainly composed of anatase, and calcium and phosphorus species. Once microarc discharge occurred during anodizing, relatively large craters were observed on the oxide film, which generally comprised two layers:an outer overlay containing significant amount of Ca and P in a mixture of amorphous oxide and nanocrystalline anatase, and an inner oxide layer dotted with micropores contacting the substrate. Moreover, as the front of the oxide film propagated toward the substrate, these micropores tended to coalesce into cavities residing at the interface between the outer and inner layers. The oxide film contained more Ca and P, but lower Ca/P ratio, and displayed less crystallinity with increasing solution b-GP concentration. Both acetate and hydroxyl ions can enhance microarc discharging, while resulted in oxide films with different morphologies and crystal structure. Hydroxyapatite precipitates on the porous oxide film were nonuniform after 2 h of hydrothermal treatment at 300℃. In contrast, introducing sodium hydrocarbonate to hydrothermal treatment solution led to the formation of high density hydroxyapatite precipitates with improved crystallinity.
論文摘要 I
Abstract II
誌謝 IV
目次 V
圖目錄 IX
表目錄 XII
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻探討 3
2.1 骨的性質與重塑 3
2.2 鈦及鈦合金的性質 5
2.3 磷酸鈣的特性 11
2.3.1 磷酸鈣形式與穩定性 11
2.3.2 磷酸鈣的應用 16
2.4 磷酸鈣的披覆技術 19
第3章 實驗方法及步驟 29
3.1 材料及前處理 29
3.2 溶液配製 29
3.3 實驗裝置 33
3.3.1 電源供應器調整 33
3.3.2 訊號擷取裝置 33
3.3.3 水熱處理 35
3.4 實驗參數 37
3.4.1 陽極氧化電壓 37
3.4.2 溶液pH調整(陰離子濃度) 37
3.4.3 水熱反應 39
3.5 試片分析 40
3.5.1 掃瞄式電子顯微鏡分析 40
3.5.2 穿透式電子顯微鏡分析 40
3.5.3 x射線繞射分析 41
第4章 結果與討論 43
4.1 陽極極化行為 43
4.2 陽極膜表面形貌 47
4.2.1 表面形貌觀察 47
4.2.2 微弧放電氧化膜 60
4.2.3 氧化膜結晶結構分析 64
4.3 TEM微結構分析 66
4.3.1 橫截面TEM-EDS分析 66
4.3.2 微結構的探討 85
4.3.3 微弧氧化膜的成長 90
4.4 陰離子與極化行為 95
4.4.1 醋酸根的效應 95
4.4.2 氫氧根的效應 100
4.4.3 磷酸根濃度的效應 112
4.4.4 醋酸鈣濃度的效應 119
4.5 陽極膜的成長機制 125
4.6 陽極膜之水熱反應 130
4.6.1 水熱處理 130
4.6.2 添加碳酸氫鈉之水熱處理(300℃) 132
4.6.3 添加碳酸氫鈉之水熱處理(250℃) 134
4.7 二氧化鈦結晶相變態 138
4.7.1 氧化鈦熱力學穩定相 138
4.7.2 微弧氧化膜之相變態 140
第5章 結論 144
第6章 未來展望 145
參考文獻 145
附錄 145
1.J. Pan, C. Leygraf, D. Thierry, and A.M. Ektessabi, “Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-asisted sputtering”, J. Biomed. Mater. Res., 35(1997), 309-318.
2. T.M. Lee, E. Chang, C.Y. Yang, “A comparision of the surface characteristics and ion release of Ti6Al4V and heat-treated Ti6Al4V”, J. Biomed. Mater. Res., 50 (2000), 499-511.
3. L. Savarino, D. Granchi, G. Ciapetti, E. Cenni, A Nardi Pantoli, C.A. Veronesi, “Ion release in protients with Metal-on-Metal Hip Bearings in Total Joint Replacement:A comparision with Metal-on-Polyethe Bearings”, J. Biomed. Mater. Res.(Appl. Biomater.), 63 (2002), 467-474.
4.W. Suchanek and M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants,” J. Mater. Res., 13 (1998), 94-117.
5.周德程編譯, 解剖生理學,昭人出版社, 1972, pp.57-108.
6.黃莉婷, “特定單脈衝電磁場與植物性雌激素對蝕骨細胞分化機轉之探討,” 中原大學醫學工程學系碩士論文, 2004年6月, pp.7-12.
7.林錦添, “Ti-6Al-4V合金披覆磷酸鈣技術之研究,” 國立台北科技大學材料及資源工程學系碩士論文, 2002年一月, pp.7-11.
8.Y.C. Fung, “Biomechanics : mechanical properties of living tissues,” New York : Springer-Verlag, (1993), pp.500.
9.J.D. Currey, “Handbook of composites Vol. 4,” volume editors, A. Kelly, S.T. Mileiko, Elsevier Science Pub. Co., c1983. pp.501.
10.U. Gross et.al, “The ultrastructure of the interface between a glass ceramic and bone,” J. Biomed. Mater. Res., 15(1981),291-302.
11.M.Ying et.al, “Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro,” J. Biomed. Mater. Res., 49(2000),238-243.
12.K. L. Wapner. “Implication of metallic corrosion in total knee arthroplasty,” Clin. Orthop. , 271(1991), 12-20
13.M. A. Khan.et.al, “The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions,” Biomaterials, 20(1999), 631-637.
14. M.A. Khan., R. L. Williams and D. F. Williams. “In-vitro corrosion and wear of titanium alloys in the biological environment,” Biomaterials, 17 (1996), 2117-2126.
15.M.A. Khan., R. L. Williams and D. F. Williams. “Conjoint corrosion and wear in titanium alloys,” Biomaterials, 20 (1999) , 765-772.
16.Zhuo Cai et.al, “Electrochemical characterization of cast titanium alloys,” Biomaterials, 24 (2003), 213-218.
17. Klaas de Groot, “Bioceramics of calcium phosphate,” CRC Press, c1983.
18. C.Larsson et.al, “Bone response to surface modified titanium implants:studies on electropolished implants with different oxide thickness and morphology,” Biomaterials, 15 (1994), 1062-1074.
19. C.Larsson et.al, “Bone response to surface modified titanium implants:studies on the early tissue response to machined and electropolished implants with different oxide thickness,” Biomaterials , 17 (1996), 605-616.
20. S.I. Tankaka, M. Aonuma, N. Hirose, T. Tanaki, “The Preparation of Porous TiO2 by Immersing Ti in NaOH Solution”, Biomaterials, 17(1996),605-616.
21. H.M. Kim, F. Miyaji, T, Kokubo, S. Nishiguchi, T. Nakamura, “Graded surface structure of bioactive titanium prepared by chemical treatment,” J. Biomed. Mater. Res., 45(1999), 100-107.
22. L. Jonášová, F.A. Müller, A. Helebrant, J. Strnad, P. Greil, “Hydroxyapatite formation on alkali-treated titanium with different content of Na+ in the surface layer,” Biomaterials, 23(2002), 3095-3101.
23. H. Takadama. H.M. Kim, T. Kokubo, T. Nakamura, “TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid,” J. Biomed. Mater. Res., 57(2001), 441-448.
24. H.M. Suzanne, P.Z. Zawadsky, G.D. Michael, “Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallied hydroxyapatite coatings on titanium implants,” J. Biomed. Mater. Res., 27(1993), 717-728.
25. W. Xue, S. Tao, X. Liu, X.B. Zheng, “Inv vitvo evalution of plasma sprayed hydroxyapatite coating having different crystallinity,” Biomaterials, 25 (2004), 415-421.
26. X. Nie, A. Leyland, A. Matthews, “Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis,” Surface and Coatings Technology, 125(2000), 407-414.
27. X. Nie, A. Leyland, A. Matthews, J.C. Jiang, E.I. Meletis, “Effect of solution pH and electrical parameters on hydroxyapatite coatings deposited by a plasma-asisted electrophoresis technique,” J. Biomed. Mater. Res., 57(2001), 612-618.
28. B.Y. Yang, M. Uchida, H.M. Kim, X. Zhang, T. Kokubo, “Preparation of bioactive titanium metal via anodic oxidation treatment,” Biomaterials, 25 (2004), 1003-1010.
29. H. Ishizawa and M. Ogino, “Formation and characterization of anodic titanium oxide films contain Ca and P,” J. Biomed. Mater. Res., 29(1995), 65-72.
30. H. Ishizawa and M. Ogino, “Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films contain Ca and P by hydrothermal treatment,” J. Biomed. Mater. Res., 29(1995), 1071-1079.
31. H. Ishizawa, M. Fujino and M. Ogino, “Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P,” J. Biomed. Mater. Res., 29(1995), 1459-1468.
32. H. Ishizawa, M. Fujino and M. Ogino, “Histomorphometric evaluation of the thin hydroxyapatite layer formed through anodization followed by hydrothermal treatment,” J. Biomed. Mater. Res., 32(1997), 199-206.
33. Y.T. Sul, C.B. Johansson, Y. Jeong, T, Albrektsson, “The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes,” Medical Engineering & Physics, 23(2001), 329-346.
34. H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, P. Skeldon, G.E. Thompson, “Crystallization of anodic titania on titanium and its alloys,” Corrosion Science, 45(2003), 2063-2073.
35. J. Lausmma, “Surface spectroscopic characterization of titanium implant materials,” Journal of Electron Spectroscopy and Related phenomena, 81(1996), 343-361.
36. N. Sato, “A theory for breakdown of anodic oxide films on metals,” Electrochimica Acta, 16(1971), 1683-1692.
37. J.L. Delplancke and R. Winand, “Galvanostatic anodization of titanium-I. structure and composition of the anodic films,” E;ectrochimica Acta, 11(1988), 1539-1549.
38. T. Sibata and Y.C. Zhu, “The effect of film formation condition on the structure and composition of anodic oxide film on titanium,” Corrosion Science, 37(1995), 253-270.
39. I. A. Ammar and I. Kamal, “Kinetics of anodic oxide-film growth on titanium-I acid media,” Electrochimica Acta, 16(1971), 1539-1553.
40. R. Rodriguez, K. Kim, J. Ong, “In vivo osterblast response to anodized titanium and anodized titanium followed by hydrothermal treatment,” J. Biomed. Mater. Res., 65A(2003), 352-358.
41. F. Milena, C. Alberto, R. Gianni, C. Roberto, G. Roberto, G. Gianluca, “In vivo and in vivo hehaviour of Ca- and P-enriched anodized titanium,” Biomaterials, 20 (1999), 1587-1594.
42. Y. Han, S. H. Hong, K. Xu, “Structure and in vitro bioactivity of titanina-based films by micro-arc oxidation,” Surface and Coatings Technology, 168(2003), 249-258.
43. L. H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, 25 (2004), 2867-2875.
44. W.H. S, Y.K. Jun, Y. Han, S.H. Hong, “Biometic apatite coatings on micro-arc oxidized titania,” Biomaterials, 25(2004), 3341-3349.
45. W. Xue, C.Wang, R. Chen, Z.Deng, “Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution,” Materials Letters 52(2002), 435-441.
46. Y. Wang, T. Lei, B. Jiang, L. Guo, “Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution”, Applied Surface Science 233(2004), 258-267.
47. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthew, S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology 122(1999), 73-93.
48. K. Shimizu, G.M. Brown, H. Habazaki, K Kobayashi, P. Skeldon, G.E. Thompson, G.C. Wood, “Impurity distributions in barrier anodic films on aluminium depth profing study”, Electrochimica Acta 44(1999), 2297-2306.
49. K. Shimizu, H. Habazaki, P. Skeldon, G.E. Thompson, G.C. Wood, “Role of metal ion impurities in generation oof oxygen gas within anodic alumina”, Electrochimica Acta 47(2002), 1225-1228.
50. K. Shimizu, H. Habazaki, P. Skeldon, G.E. Thompson, G.C. Wood, “Migration of oxalate ions in anodic alumina” Electrochimica Acta , 46(2001), 4379-4382.
51. T.H. The. A. Berkani, S. Mato, P. Skeldon, G.E. Thompson, H. Habazaki, K. Shimizu, “Initial stages of plasma electrolytic oxidation of titanium”, Corrosion Science, 45 (2003), 2757-2768.
52. J.W. Schultze, M.M. Lohrengel, “Stability, reactivity and breakdown of passive films. Problem of recent and future research,” E;ectrochimica Acta, 45(2000), 2499-2513.
53. E.S. Thian, K.A. Khor, N.H. Loh, S.B. Tor, “Process of HA-Coated Ti-6Al-4V by a ceramic slurry approach: an in vitro study,” Biomaterials, 25(2004), 3341-3349.
54. P. Ducheyne, W.V. Raemdonck, “Structural analysis of hydroxapatite coatings on titanium”, Biomaterials, 7(1986), 97-103.
55. P. Ducheyne, and S. Radin, “Calcium phosphate ceramic coatings on porous titanium:effect of structure and composition on electrophoretic deposition on, cacuum sintering and in vitro dissolution”, Biomaterials, 11(1990), 244-254.
56. R. Damodaran, B.M. Moudgil, “Electrophoretic deposition of calcium phosphates from non-aqueous media”, Colloids and Surfaces A:Physicochemical and Engineering aspects, 80(1993), 191-195.
57. R. Ramirez, R. Gonzalez, and R. Pareja, “Semiconducting property of a wide-band-gap oxide crystal:Impact ionization and avalanche breakdown” Physical Review B, 55(1997), 2413-2416.
58. N. Rangavittal, A.R. Landa-Canovas, J.M. Gonzalez-Calbet, M. Vallet-Regi, “Structural study and stability of hydroxapatite and β-tricalcium phosphate:Two implant bioceramics ”, J. Biomed. Mater. Res., 51(2000), 660-668.
59.X. Lu, Y. Leng ”Theretical analysis of calcium phosphate precipitation in simulated bidy fluid”, Biomaterials, 26(2005), 1097-1108.
60. J. M. Choi, Y.M. Kong, S. Kim, and C. S. Hwang, “Formation and characterization of hydroxyapatite coating layer on Ti-base metal implant by electro-beam deposition”, J. Mater. Res., 14(1999), 2980-2985.
61. J. Weng, Q. Liu, J.G.G. Wolke, X. Zhang, “Formation and characteristics of the apatite coating layer on plasma-sprayed hydroxyapatie coatings in simulated body fluid”, Biomaterials, 18(1997), 1027-1035.
62. S.H. Rhee, J. Tanaka, “Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid,” Biomaterials 20(1999), 2155-2160.
63. K. de Groot, R.T.G. Geesink, C.P.A.T. Klein and P. Serkian,, “Plasma-sprayed coating of hydroxyapatite,” J. Biomed. Mater. Res., 21(2000),1375-1381.
64. B.S. Chang, C.K. Lee, K.S. Hong, H.J. Youn, H.S. Ryu, S.S. Chung, K.W. Park, “Osteoconduction at porous hydroxyapatite with various pore configurations”, Biomaterials 21(2000), 1291-1298.
65. Z.Wang, P.Xiao, Jshemilt, “Fabrication of composite coating using a combination of electrochemical methods and reaction bonding process,” Journal of the European Ceramic Society, 20(2000), 1469-1473.
66. Q. Zhang, Y. Leng, “Electrochemical activation of titanium for biomimetic coating of calcium phosphate”, Biomaterials 26(2005), 3853-3859.
67. S.N. Heavens, “Electrophoretic Deposition as a Processing Route for Ceramics”, Jon G. P. Biner, Advanced Ceramic Processing and Technology pp.255-283.
68. Editor-in-chief, Thaddeus B. Massalski ; editors, Joanne L. Murray, Lawrence H. Bennett, Hugh Baker “Binary alloy phase diagrams”, American Society for Metals, c1986, 1793-1794.
69. D. R. Stull and H. Prophet, “JANAF thermochemical tables”, 1986.
70. Z. Wang, S. K. Saxena, V. Pischedda, H.P. Liermann, C.S. Zha“X-ray diffraction study on pressure-induced phase transformations in nanocrystalline anatase/rutile(TiO2)”, Journal of Physics:Condensed Matter, 13(2001), 8317-8323.
71. H. Zhang, J. F. Branfield, “Thermaldynamic analysis of phase stability of nanocrystalline titania”, J. mater. chem., 8(1998), 2073-2076.
72. H. Zhang, J. F. Branfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles”, American Mineralogist, 84(1999), 528-535.
73. R. L. Peen, J.F. Banfield, “Oriented attachment and growth, twinning, and formation of metastable phases:Insights from nanocrystalline TiO2”, American Mineralogist, 83(1998), 1077-1082.
74. R. R. Bacsa, M. Grätzel, “Rutile Formation in Hydrothermally Crystallized Titania” J. Am. Soc., 79(1996), 2185-2188.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔