跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鈺聲
研究生(外文):Yu-Sheng Chang
論文名稱:氧化鋅及氧化鋅摻雜鎂陣列奈米柱之光學性質
論文名稱(外文):Optical properties of well-aligned ZnO and Zn1-xMgxO nanorods
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:氧化鋅氧化鎂光學性質光激發光
外文關鍵詞:znomgoPLoptical
相關次數:
  • 被引用被引用:1
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要研究MOCVD在矽(100)基板上合成的高品質氧化鋅及氧化鋅摻雜鎂奈米柱之光學性質。由SEM、XRD和光譜分析,可知其為高品質低雜質之奈米結構。而由室溫到25k之變溫光激發光譜分析中,可以發現氧化鋅摻雜鎂奈米柱是由LX1(localized exciton)及LX2所主導,隨著鎂的濃度增加LX2的放光佔總放光之比例隨之增加,此意味著LX2為鎂原子侷限自由激子所產生的束縛激子放光。且由於摻雜鎂使得晶格排列較不整齊(disorder),產生應力不平均或缺陷,造成放光有變寬之趨勢。而在光偏極性的實驗裡,發現氧化鋅及氧化鋅摻雜鎂奈米柱皆有線性偏極之現象,平行於長軸之發光強度越強。這意味著氧化鋅及氧化鋅摻雜鎂奈米柱皆為好的光學材料,且藉由改變鎂的濃度,可以控制偏極光之能量大小。
High-quality well-aligned ZnO and Zn1-xMgxO nanorods were grown on Si(001) substrates by using metalorganic chemical vapor deposition. The temperature dependent and polarized behavior of photoluminescence observed in well-aligned ZnO and Zn1-xMgxO nanorods in the temperature range of 25-295k is described. luminescence was dominated by localized excitons LX1 and LX2 in Zn1-xMgxO nanorods. With increasing Mg content LX2 became dominated the luminescence in low temperature. And increasing Mg content also influenced the luminescence to be boarding. It is found that both ZnO and Zn1-xMgxO nanorods were strongly polarized along the long axis. This indicated that ZnO and Zn1-xMgxO nanorods had high optical quality and with changing Mg content we can control deferent energies emissions with strongly polarized.
第一章 緒論 1
1-1氧化鋅簡介 1
1-2研究動機 3
第二章 理論基礎 4
2-1 Luminescence 4
2-1-2 價帶導帶躍遷(band to band transition) 6
2-1-2-1直間能帶材料(direct gap materials) 6
2-1-2-2間接能帶材料(indirect gap materials) 7
2-1-3 自由能階到受縛能階的躍遷(free-to-bound transition) 8
2-1-4 施子受子對躍遷(Donor-Acceptor Pair transition) 8
2-1-5 自由激子和束縛激子(Free excitons and bound excitons) 9
2-2 光激發光Photoluminescence 10
2-2-1 Excitation and relaxation 10
2-2-1-1低載子濃度(Low carrier densities) 12
2-2-1-2 高載子濃度(high carrier densities) 13
2-3 拉曼光譜原理 15
第三章 變溫光激發光系統 19
3-1光源、透鏡及濾鏡 20
3-2 分光儀monochromator 21
3-2-1 Grating 22
3-3偵測器detector 24
第四章 試片成長及分析 26
4-1成長原理及方式 26
4-2表面型態與結構分析 27
4-2-1 SEM分析 27
4-2-2 XRD分析 35
4-2-3 Defect band PL 39
4-3總結 41
第五章 氧化鋅奈米柱之光激發光譜及光學性質 42
5-1氧化鋅奈米柱之吸收 42
5-2氧化鋅奈米柱變溫光激發光譜分析 45
第六章ZN1-XMGXO奈米柱之光學性質 50
6-1 Zn1-xMgxO 50
6-2 氧化鋅奈米柱摻雜鎂對光激發光譜之影響 51
6-3 摻雜濃度對光激發光半高寬之影響 53
6-4 Zn1-xMgxO奈米柱變溫下之光激發光譜分析 54
6-5 溫度對放光位置之影響 61
6-6 Power dependence of PL 65
第七章 ZNO& ZN1-XMGXO奈米柱光激發光之偏極性 70
7-1 ZnO 和 Zn1-xMgxO奈米柱光激發光之偏極性 70
7-2 實驗與分析 70
7-3 結果與討論 78
第八章 結論 79
第九章 FUTURE WORK 81
第十章 參考資料 REFERENCE 82
[1] Ashkenov N et al 2003 J. Appl. Phys. 93 126
[2]Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying
Wu, Hannes Kind, Eicke Weber, Richard Russo, and Peidong
YangScience 292,1897(2001)
[3]http://www.fhi-berlin.mpg.de/th/personal/hermann/ZnO.gif
[4]Mi YM, Odaka H, Iwata S, Jpn. J. Appl. Phys, V.38,3453(1999)
[5]A. N. MARIANO AND R. E. HANNEMAN, J. APPL. PHYS. 34, 384
(1963)
[6]E.L. Paradis and A.J. Shuskus,"RF Sputtered Epitaxial ZnO Films
onSapphire for Integrated Optics”, Thin Solid Films, 38(1976),
131-141
[7]G. F. Neumark, in Widegap II-VI Compounds for Opto-Electronics
Applications,edited by H. E. Ruda ~Elsevier, London, (1992), p. 281.
[8]D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T.
Pantelides,Appl. Phys. Lett. 63, 1375(1993)
[9]SUKU KIM, B. S. KANG, AND F. REN, APPL. PHYS. LETT. 84,
1904(2004)
[10]Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,
Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong
Yang, Science ,V292,1897,(2001)
[11]Mark fox, Optical properties of solids
[12]Materials science & engineering R reports: A review journal V
R18(1997) G. D. Gilliland, Photoluminescence spectroscopy of
crystalline semiconductors
[13]Peter Y. Yu, Manuel Cardona, Fundamentals of semiconductors
[14]kittel, Introduction to solid state physics
[15]M.T.Ramsbey, I. Szafranek, G. Stillman and J.P.Wolfe, Phys,Rev.,B49
(1994) 16427
[16] J. Plaza, J. L. Castaño, B. J. García, H. Carrère, and E. Bedel-Pereira
Appl. Phys. Lett. 86, 121918 (2005)
[17]汪建民, 材料分析, 中國材料科學學會
[18]http://www.gfzpotsdam.de/pb4/pg2/equipment/raman/raman-spec.jpg
[19]S.K Brierley, H.T. Hendriks, W.E. Hoke, P.J. Lemonias and D.G. Weir,
Appl. Phys. Lett. 63(1993) 812
[20] HORIBA Jobin Yvon
[21] The book of photon tools, Oriel instrument
[22] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A.
VoigtAppl. Phys. Lett. 68, 403 (1996)
[23] Bixia Lin, Zhuxi Fu, and Yunbo JiaAppl. Phys. Lett. 79, 943 (2001)
[24] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and
J. Narayan J. Appl. Phys. 1999,V85,p.7884
[25] A. Mang, K. Reimann, and St. Rubenacke Solid state commun, V94,
251,(1995).
[26] D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960)
[27] J. E. Rowe, M. Cardona, and F. H. Pollak, Solid State Commun. 6,
239 (1968)
[29] Jiansheng Jie, Guanzhong Wang, Yiming Chen, Xinhai Han, Qingtao
Wang, Bo Xu, and J. G. Hou Appl. Phys. Lett. 86, 031909 (2005)
[30] D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell
J.Appl.Phy ,2003,93, 3214
[31] Y. P. Varshni, Physica 34,p.p. 149(1967)
[32] T. Shimomura, D. Kim, M. Nakayama, Journal of luminescence 112
(2005) p.191
[33]B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami
Appl. Phys. Lett. 2003, 83, 1635
[34] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W.
Harsch, and G. Cantwell Phys. Rev. B.57.12151.1998
[35] W. Wulfhekel, M. Klaua, D. Ullmann, F. Zavaliche, J. Kirschner,
R. Urban, T. Monchesky, and B. Heinrich, Appl. Phys. Lett. 78,
509 ~2001
[36] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K.
Tamura,and H. Koinuma, J. Appl. Phys. 91, 1993 ,2002.
[37] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T.
Venkatesan, R. D. Vispute, and H. Shen Appl. Phys. Lett. 82, 3424,
2003
[38] M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G.
Wagner, D. Spemann, H. Hochmuth, and M. Grundmann Appl. Phys.
Lett. 86, 143113 (2005)
[39] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan,
and H.Shen, Appl. Phys. Lett. 80, 1529 2002.
[40] http://www.fhi-berlin.mpg.de/th/personal/hermann/MgO139.gif
[41] Makino, N. T. Tuan, H. D. Sun, C. H. Chia, Y. Segawa, M. Kawasaki,
A. Ohtomo, K. Tamura, T. Suemoto, H. Akiyama, M. Baba, S. Saito,
T. Tomita, and H. Koinuma APPL. PHYS. LETT. 78, 1979 (2001)
[42] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J.
Massies, and P. Gibart J. Appl. Phys. 86,3721 (1999)
[43] C. Yong-Hoon, B. D. Little, G. H. Gainer, J. J. Song, S. Keller, U.
K.Mishra, and S. P. DenBaars, MRS Internet J. Nitride Semicond.
Res. 4S1,G2.4 ,1999
[44] X. Chen, A. Nazzal, D. Goorskey, and M. Xiao, Phys. Rev. B 64,
245304,2001
[45]J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P.
Alivistatos,Science 292, 2060 (2001).
[46]N.E. Hsu, W.K. Hung, and Y. F. Chen, “Origin of defect emission
identified by polarized luminescence from aligned ZnO nanorods”, J.
Appl. Phys. Vol.96, 4671 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊