跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳馨怡
研究生(外文):Hsin-Yi Chen
論文名稱:分散劑於α–氧化鋁表面之吸附研究
論文名稱(外文):Adsorption Phenomena of Polyelectrolyte Dispersants on α-Alumina Surfaces
指導教授:韋文誠韋文誠引用關係陳俊杉陳俊杉引用關係
指導教授(外文):Wen-Cheng WeiChuin-Shan Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:169
中文關鍵詞:分子動力學模擬原子力顯微鏡 (AFM)α-Al2O3分散劑吸附PAAPMAPMMAPEPAMC
外文關鍵詞:AluminaDispersantadsorptionMolecular dynamics (MD) simulationAtomic force microscopy (AFM)PAAPMAPMMAPEPAMC
相關次數:
  • 被引用被引用:3
  • 點閱點閱:583
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的即在了解分散劑擴散至粉體表面之吸附型態,進而計算表面間之立體阻隔作用力存在與否,從而推論出此系統是否達到穩定分散。為觀察分散劑(高分子或聚電解質),本研究用分子動力學模擬 ( Molecular Dynamics/MD Simulation ) 觀察分散劑於α-Al2O3表面之立體阻隔作用 ( steric force ) ,並以原子力顯微鏡 ( AFM ) 及理論與模擬結果做比較。藉由控制不同pH值,讓分散劑,丙烯酸 (PAA) ,以直立型式 (tail) 吸附在α-氧化鋁表面上,並以吸附量實驗所推測出來的吸附型態和模擬作比對。進而以此模型為基礎,建構二個表面之系統,並在間距為一及二倍PAA鏈長範圍,計算其作用力。最後,再以原子力顯微鏡所測出的立體阻隔作用力(steric force)和模擬作比較。在分散劑鏈長為1.6nm及表面距離間距為1.6 ~ 3.2nm時,由模擬、實驗及理論可看出有立體阻隔作用力存在,可推論此分散劑可提供良好之分散效果。本研究係採用二種不同解離度之PAA吸附在 (001) α-Al2O3表面,利用分子動力學模擬,原子力顯微鏡及立體阻隔理論觀察表面間之作用力。結果發現︰使用鏈長為 1.6nm完全解離之PAA,因其分子間有很強的排斥力而使之以直立型式吸附在表面上,從而提供一穩定之立體阻隔排斥力於粉體表面間,且此確實於分子動力學模擬中可觀察到,由AFM及理論可得與模擬一致性之結果。
This study presents a simulation procedure and demonstrates the simulation results in comparison with the adsorption of polymers by atomic force microscopy (AFM) experiment. The adsorption process of dispersants interplay with α-Al2O3 surfaces, adsorbed conformations, and the steric potential interaction are of interest. The procedure employed molecular dynamics (MD) techniques to execute simulations on the interactions of polyacrylic acid (PAA), polymethacrylic acid (PMA), polymethyl methacrylate (PMMA), polyethylene (PE), and Poly 2-Acrylamido-2-methylpropane sulfonic acid-co-Methacrylic acid-co-(β-carboxylate (hydroxyl acrylic polyethylester))) (PAMC) polymers with various dissociated fraction, 0.1、0.5、1, with O- or Al-terminated on , , , , and planes of Al2O3 surfaces, which were constructed in nano-scale thickness (ca. 1~1.3 nm). Ten parameters, i.e., optimal thickness, Al2O3 planes, termination, functional groups, molecular weight, dissociated fraction, chain numbers, medium, and the pH effects on steric force between two surfaces has been studied.
Direct measurements of the interaction forces between Al2O3 surfaces by AFM in the absence and presence of low-molecular-weight (MW = 5000) poly (acrylic acid) (PAA) were conducted at different pH solutions. The measurement at high pH where the adsorbed, highly charged anionic polyelectrolyte extends into the solution, leads to a combination of steric and electrostatic interactions. The buildup of PAA at the interface is closely related to manifest attractive bridging interactions, adhesion, during approaching route. The force results are compared the MD simulation by the same dispersant. In the next section, comparing different polyelectrolytes to observe the factor to dispersion is proceeding. Eventually, our destination is to predict the better dispersants by simulation in lieu of synthesis.
摘 要 ……………………………………………………………………………………...Ⅲ
Abstract……………………………………………………………………………………...ⅥContents……………………………………………………………………………………...Ⅳ
List of Tables ………………………………………………………………………………..Ⅸ
List of Figures …………………………………………………………………………..…. VI
Notation ………………………………………..………………………...………………. VI

1. Introduction ……………………………………….………………………………………1
1.1 Motivation ……………………………………………………………………….……..1
1.2 Objectives …………………………………………………………………………...….2
2. Literature Review …………………………….………………………….………………..5
2.1 Interparticle Force ……………………………………………………………...………5
2.2 DLVO Theory ………………………………………………………………………….9
2.2.1 van der Waals Forces ……………………………………………………………11
2.2.2 Electrostatic Double-Layer Forces ………………………………………………11
2.3 Polymer-Induced Stabilization ………………………………………..……………....16
2.3.1 Dimensions of a Polymer Chain .…………………………………......…...……17
2.3.2 Conformation of Adsorbed Polymers..……………………………...………..…18
2.3.3 Scaling Law Theories and Steric Forces ………………………………..………21
2.3.4 Electrosteric Forces …………………………………………………….……….23
2.4 Force Measurement by AFM .…………………………………………………….…...25
2.4.1 Principle of Force Measurements by AFM …………..…………………………26
3. Computational Methodology …………………………….……………………………...28
3.1 Periodic Boundary Conditions …………………………….………………………….28
3.2 Universal Force Field …………………………………………………………………30
3.3 Energy Minimization ………………………………………………………………….34
3.3.1 Steepest Decent Method ……………………….………………………………..34
3.3.2 Newton-Raphson Method ………………...…………………………………….35
3.3.3 The Choice of Algorithm ……………………………………………………….35
3.4 Molecular Dynamics …………………………………………………….……………36
3.4.1 General Principles ………………………………………………………………36
3.4.2 Equation of Motion ……………………………………………………………..37
3.4.3 Methods for Integrating the Equations of Motion ………………………………37
3.4.4 Thermodynamics Ensembles …………….………………………………….….39
3.5 Modeling Procedures ………………………..…………………………………….….43
3.5.1 Determination of α-Al2O3 surfaces ……………………………………………..46
3.5.2 Models of the Dispersant Structures…….………………………………………48
3.5.3 Models of Dispersant/α-Al2O3 Surface System …………………………………48
3.5.4 Models of two α-Al2O3 Surfaces Bearing Polymers …………………………….51
3.6 Calculation of the Adsorption Energy ………………….……………………………..54
3.7 Summary………………………………………………………………………………54
4. Experimental Procedure …………………………………………….…………………..59
4.1 Raw Materials …………………………………………………….…………………..59
4.2 Sample Preparation ……………………………………………….…………………..60
4.2.1 Tip Preparation ………………………….……………………………………….60
4.2.2 Preparation of Substrates ………………………………….……….……...…….60
4.2.3 Purification…………………….……….…………………..……….…………….63
4.2.4 PAA Solution ……………………………………….…….……….…………….63
4.3 Property Measurement ……………………………………….………….……………64
4.3.1 Zeta-Potential ……………………………………….………..………………….64
4.3.2 Potentiometric Titrations …………………………………….…….…………… 64
4.3.3 Adsorption ……………………………………….……………………………….66
4.3.4 Binding Energy Measurement ……………………………………………………66
4.3.5 AFM Force Measurement .……………………………………….………………67
5. Results and Discussion ……….…………………………………………………………..70
5.1 pH Effect on Surface Charge of α-Al 2O3 ………………….….………………………70
5.2 pH Effect on the Dissociation of PAA ……………….….….…………………………74
5.3 Adsorption of PAA on α-Al2O3 Particle …………………...…………………………76
5.4 MD Simulation ……………………………………….…….………………………….79
5.4.1 ModelⅠ: Optimal Initial Distance of Dispersant from the Surface ……………79
5.4.2 ModelⅡ: Optimal Thickness of Al2O3 Surface ………………………………...90
5.4.3 Model Ⅲ: Al2O3 Plane Effect on Adsorption ……………….………….………93
5.4.4 Model Ⅳ: Termination of Al2O3 Surface Effect on Adsorption ………………103
5.4.5 Model Ⅴ: Functional Group Effect on Adsorption Conformation & Energy ...109
5.4.6 Model Ⅵ: MW of Dispersants Effect on Adsorption …………………………116
5.4.7 Model Ⅶ: Dissociated Fraction of Dispersants Effect on Adsorption …..……120
5.4.8 Model Ⅷ: Chain Number of Dispersants Effect on Adsorption ………………128
5.4.9 Model Ⅸ: Medium Effect on Adsorption ………………………………..……135
5.4.10 ModelⅩ: Interaction between Surfaces Bearing Dispersants..........................139
5.5 Force Measurement by AFM………………………………….……………………..146
5.5.2 Binding Energy Analysis by ESCA ……………………...……………………146
5.5.3 Force-Distance Curve.………………………………….....……………………150
6. Conclusions .…………………………..…………………………………………………156
6.1 Adsorption of PAA on Al2O3. ……………..…………………………………………156
6.2 MD simulation of dispersant adsorbed on Al2O3………..…………………..……. …156
6.3 Interaction Forces………………………………………..………………...………….157
7. Future Work…………………………..…………………………………………………158
References ………………………………………………….………………………………160
Chapter 1
1.1 虞邦英,“鈦酸鋇膠粒於水基溶液中之表面吸附及分散研究”,國立台灣大學科料科學與工程學研究所碩士論文,2001。
1.2 陳龍賓,“分散劑的合成以及對於鈦酸鋇粉末的分散性能評估”,國立台灣師範大學化學研究所碩士論文,2002。
1.3 應國良,“鈦酸鋇漿體分散劑的合成與應用”,國立台灣師範大學化學研究所碩士論文,2003。
1.4吳杏旋,“添加陰離子型分散之鈦酸鋇漿體在不同 pH 值下的分散行為”,國立台灣師範大學化學研究所碩士論文,2004。
1.5陳志豪,“高分子分散劑的合成以及對於鈦酸鋇粉末的分散性質”,國立台灣師範大學化學研究所碩士論文,2005。

Chapter 2
2.1 J. A. Lewis, "Colloidal Processing of Ceramics", J. Am. Ceram. Soc., 83 [10], 2341–59 (2000).
2.2 R. G. Horn, "Surface Forces and Their Action in Ceramics Materials", J. Am. Ceram. Soc., 73 [5], 1117–35 (1990).
2.3 K. N. Israelachvili, Intermolecular and Surface forces, 2nd edition, Academic Press, London, 1992.
2.4 Y. Fukuda, T. Togashi, M. Naito and H. Kamiya, “Analysis of Electrosteric Interaction of Polymer Dispersant in Dense Alumina Suspensions with Different Counter-Ion Densities Using an Atomic Force Microscope,” J. Ceram. Soc. Jpn., 109 [6], 516-20 (2001).
2.5 D. J. Shaw, Introduction to Colloid and Surface Chemistry; pp.176-79, Butterworth-Heinemann, Oxford, 1922.
2.6 D. H. Napper, Polymeric Stabilization of Colloidal Dispersions; Academic Press, London, U.K., 1983.
2.7 I. D. Morrison and S. Ross, Colloidal dispersions suspensions, emulsions, and foams, Wiley-Interscience, New York, pp. 388-89, 2002.
2.8 P. Greil, J. cordelair, A. Bezold, "Discrete Element Simulation of Ceramic Powder Processing , " Z. Metallkd., 92 [7] (2001).
2.9 J. S. Reed, Principles of ceramics processing; pp. 157-58, Wiley & Sons, New York, 1995.
2.10吳杏旋,“添加陰離子型分散之鈦酸鋇漿體在不同 pH 值下的分散行為” 國立台灣師範大學化學研究所碩士論文,2004。
2.11 Zetasizer Nano series technical note, MRK654-01, Malvern Instruments Ltd.
2.12 W. M. Sigmund, "Novel Powder-Processing Methods for Advanced Ceramics," J. Am. Ceram. Soc., 83 [7] 1557–74 (2000).
2.13 Y. Hirata, J. Kamikakioto, A. Nishimoto & Y. Ishihara, “Interaction Between a-Alumina Surface and Polyacrylic Acid,” J. Ceram. Soc. Jpn., 100 [8], 7-12 (1992).
2.14 V. A. Hackley, “Colloidal Processing of Si3N4 with PAA: I, Adsorption and Electrostatic Interactions,” J. Am. Ceram. Soc., 80 [9] 2315–25 (1997).
2.15 W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct Measurement of Colloidal Forces Using an Atomic Force Microscope,“ Nature (London), 353 [19] 239-41 (1991).
2.16 W. A. Ducker and T. J. Senden, “Measurement of Forces in Liquids Using a Force Microscope,“ Langmuir, 8, 1831-36 (1992).
2.17. H. J. Butt, M. Jaschke, and W. Ducker, “Review: Measuring Surface Forces in Aqueous Electrolyte Solution with the Atomic Force Microscope,” Bioelectrochemistry and Bioenergetics, 38, 191-201 (1995).
2.18 S. Biggs and T. W. Healy, “Electrosteric Stabilization of Colloidal Zirconia with Low Molecular Weight Polyacrylic Acid,” J. Chem. Soc. Faraday Trans., 90 [22] 3415–21 (1994).
2.19 S. Biggs , “Electrosteric Stabilization of Colloidal Zirconia with Low-Molecular-Weight Polyacrylic Acid,” Langmuir, 11, 156-62 (1995)
2.20 I. Larson, c. J. Drummond, D. Y. C. Chan, and F. Grieser, “Direct Force Measurements between Silica and Alumina,” Langmuir, 13, 2109-12 (1997).
2.21 M. Giesbers, J. M. Kleijn, G. J. Fleer, and M. A. C. Stuart, “Forces between Polymer-Covered Surfaces: A Colloidal Probe Study,” Colloids Surf. A, 142, 243-53 (1998).
2.22 H. Kamiya, Y. Fukuda, Y. Suzuki, and M. Tsukada, “Effect of Polymer dispersant Structure on Electrosteric Interaction and Dense Alumina Suspension Behavior,” . Am. Ceram. Soc., 82 [12] 3407-12 (1999).
2.23 Y. Fukuda, T. Togahi, Y. Suzuki, and M. Naito, “Influence of Additive Content of Anionic Polymer Dispersant on Dense Alumina Suspension Viscosity,“ Chem. Eng. Sci., 56, 3005-10 (2000).
2.24 H. G. Pedersen and L. Bergström, “Forces Measured between Zirconia Surfaces in Poly (acrylic acid) Solutions,” J. Am. Ceram. Soc., 82 [5] 1137-45 (1999).
2.25 L. Bergström and E. Blomberg, "Probing Polymeric Stabilization in Nonaqueous Media by Direct Measurements," J. Am. Ceram. Soc., 83 [1] 217–19 (2000).
2.26 E. Laarz, A. Meurk, J. A. Yanez, and L. Bergström, “Silicon Nitride Colloidal Probe Measurements: Interparticle Forces and the Role of Surface-Segment Interactions in Ply (acrylic acid) Adsorption form Aqueous Solution,” J. Am. Ceram. Soc., 84 [8] 1675-82 (2001).
2.27 T. Hassel, P. Greil “Messung Kolloidaler Wechselwirkungen in Keramischen Suspensionen”, Diplomarbeit, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2001.
2.28 Cesarano III, I. A. Aksay, and A. Blier, “Stability of Aqueous a-Alumina Suspensions with Poly(methacrylic acid) Polyelectrolyte,” J. Am. Ceram. Soc., 71 [4] 250–55 (1988).
2.29 J.Cesarano, I. A. Aksay, “Processing of Highly Concentrated Aqueous α-Alumina Suspensions Stabilized with Polyelectrolytes,” J. Am. Ceram. Soc.,71 [12]1062-67(1988).
2.30 W. J. Wei, S. J. Lu, B. Yu, “Characterization of Submicron Alumina Dispersions with
Poly(methacrylic acid) Polyelectrolyte,” J. Eur. Ceram. Soc., 15, 155-164 (1995).
2.31 E.Luther,J.Yanez,G.Franks,F.Lange,D.Pearson,“Effect of Ammonium Citrate on the Rheology and Particle Packing of Alumina Slurries”, J. Am. Ceram. Soc.,78 [6]1495-500 (1995.)
2.32 Baklouti, C. Pagnoux, T. Chartier& J. F. Baumard, “Processing of Aqueous α-Al2O3, α-SiO2 and α-SiC Suspensions with Polyelectrolytes”, J. Eur. Ceram. Soc., 17, 1387-92 (1997).
2.33. Kamiya, Y.Fukuda, Y. Suzuki, M. Tsukada,“Effect of Polymer Dispersant Structure on Electrosteric Interaction and Dense Alumina Suspension Behavior”, J. Am. Ceram. Soc., 82 [12] 3407-12(1999).
2.34. Santhiya, G. Nandini, S. Subramanian, K. A. Natarajan , S.G. Malghan,“Effect of Polymer Molecular Weight on The Adsorption of Polyacrylic Acid at the Alumina-Water Interface” Colloids Surf. A, 133,157-63 (1998).
2.35 M. Anklekar, S.A. Borkar, S. Bhattacharjee, C. H. Page, A. K. Chatterjee, “Rheology of Concentrated Alumina Suspension to Improve the Milling Output in Production of High Purity Alumina Powder”, Colloids Surf. A, 133, 41-7 (1998).
2.36 Santhiya, S. Subramanian, K. A. Natarajan, S. G. Malghan, “Surface Chemical Studies on the Competitive Adsorption of Poly(acrylic acid) and Poly(vinyl alcohol) onto Alumina”, J. Coll. Interface Sci., 216, 143-53 (1999).
2.37 Davies and J.G.P. Binner, “Coagulation of electrosterically dispersed concentrated alumina suspensions for paste production,” J. Eur. Ceram. Soc., 20, 1555-67 (2000).
2.38 Yuping, J. Dongliang, P. Greil, “Tape casting of aqueous Al2O3 slurries,” J. Eur. Ceram. Soc., 20, 1691-97 (2000).
2.39 Mei, J. Yang, J. M. F. Ferreira,“Effect of Dispersant Concentration on Slip Casting of Cordierite-Based Glass Ceramics”, J. Coll. Interface Sci., 241, 417-21 (2001).
2.40 Tsubaki, M. Kato, M. Miyazawa, T. Kuma, H. Mori,“The Effects of the Concentration of a Polymer Dispersant on Apparent Viscosity and Sedimentation Behavior of Dense Slurries, ” Chem. Eng. Sci., 56, 3021-26 (2001).
2.41 Bertrand , C. Filiatre, H. Mahdjoub, A. Foissy, C. Coddet, “Influence of slurry characteristics on the morphology of spray-dried alumina powders”, J. Eur. Ceram. Soc., 23, 263-71 (2003).
2.42 Baron, C. S. Kumar, G. L. Gonidec, S. Hampshire,“Comparison of different alumina powders for the aqueous processing and pressureless sintering of Al2O3-SiC nanocomposites” J. Eur. Ceram. Soc., 22, 1543-52 (2002).
2.43 A. Pettersson, G. Marino, A. Pursiheimo, J. B. Rosenholm, “Electrosteric Stabilization of Al2O3,ZrO2,and 3Y-ZrO2 Suspensions: Effect of Dissociation and Type of Polyelectrolyte”, J. Coll. Interface Sci., 228, 73-81 (2000)
2.44 G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheujens, T. Cosgrove, and B. Vincent, Polymers at Interfaces. Chapman Hall, London, U.K., 1993.
2.45 Y. C. Zhang, “Scaling Theory of Self-Organized Criticality,” Phys. Rev. Lett. 63 [5] 470-74 (1989).

Chapter 3
3.1 C. Y. Cheng, K. J. Lee, Y. Li, and B. C. Wang, “Molecular Dynamics Simulation of Polymers Adsorbed onto an Alumina Surface,” J. Adhesion Sci. Technol., 12 [7], 695-712 (1998).
3.2 K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skid, “ UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations,” J. Am. Chem. Soc., 114, 10024-39 (1992).
3.3 C.Y. Wang and D. M. Wang, Diffusion of Drug Molecules in Polymeric Membranes —Molecular Dynamics simulations and Free Volume Theory Analysis, Dissertation, National Taiwan University, Taiwan, 2002.
3.4 K. B. Wiberg, “A scheme for train energy minimization, Application to the cycloalkanes,” J. Am. Chem. Soc., 87, 1070-78 (1965).
3.5 A. L. Tourier, The Role of the Solvent in the Protein Dynamical Transition, dissertation, University of Heidelberg, Germany, 2004.
3.6 B. Hyde, Effects of Carbon on Fracture Mechanisms in Nanocrystalline BCC Iron - Atomistic Simulations, Dissertation, Virginia Polytechnic Institute and State University
, Blacksburg, Virginia, 2004.
3.7 M. P. Allen and D. J. Tildesley, Computer simulation of Liquids, Clarendon Press, Oxford, 1987.
3.8 J. M. Haile, Molecular Dynamics simulation, John Wiley & Sons, New York, 1992.
3.9 B. R. Gelin, Molecular Modeling of Polymer Structures and Properties, Hanser Publishers, Munich, 1994.
3.10 D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San diego, 1996.
3.11 S. Nose, "A molecular dynamics method for simulations in the canonical ensemble", Molec. Phys., 52, 255-268 (1984).
3.12 S. Nose, "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519 (1984).
3.13 S. Nose, "Constant temperature molecular dynamics methods", Prog. Theoret. Phys. Supplement, 103, 1-46 (1991).
3.14 D. A. Litton and S. H. Garofalini, “Molecular Dynamics Simulations of Calcium Aluminosilicate Intergranular films on (0001) Al2O3 Facets,” J. Am. Chem. Soc., 83 [9] 2273-8 (2000).
3.15 P. J. Eng,.T. P. Trainor, G. E. Brown Jr., G. A. Waychunas, M. Newville, S. R. Sutton, M. L. Rivers, "Structure of the hydrated a-Al2O3(0001) surface," Science, 288, 1029-33 (2000).
3.16 16 J. Ahn and J. W. Rabalais, "Composition and structure of the Al2O3 {0001}-(1 × 1) surface," Surf. Sci., 388, 121-25 (1997).
3.17 P. Guenard, G. Renaud, A. Barbier, M. Gautier-Soyer, " Determination of the alpha- Al2O3 (0001) surface relaxation and termination by measurements of crystal truncation rods," Surf. Rev. Lett., 5, 321 (1997).
3.18 J. Toofan and P. R. Watson, "The termination of the α-Al2O3 (0001) surface: a LEED crystallography determination," Surf. Sci. 401, 162-65 (1998).
3.19 S. Blonski, S. H. Garofalini, “Molecular dynamics simulations of α-alumina and γ-alumina surface,” Surface Science, 295, 263-74 (1993).
3.20 V. E. Henvich and R. A. Cox, The surface science of metal oxide, Cambridge Univ. Press, 1994.
3.21 陳逸年,“坯料成份給氧化鋁射出成形製程之影響”,國立台灣師範大學化學研究所碩士論文,1997。
3.22鄭存統,“PIM胚料成份間相容性的分子模擬”,國立台灣師範大學化學研究所碩士論文,1999。
3.23 A. R. Leach, Molecular Modelling: Principles and Applications, Harlow, England ; New York : Prentice Hall, 2001.

Chapter 4
4.1 D. H. Napper, Polymeric Stabilization of Colloidal Dispersions; Academic Press, London, U.K., 1983.



Chapter 5
5.1 B. V. Velamakanni, F. F. Lange, "Effect of Interparticle Potentials and Sedimentation on Particle Packing Density of Bimodal Particle Distributions During Pressure Filtration" J. Am. Ceram. Soc., 74, 166-72 (1991).
5.2 G. V. Franks, F. F. Lange, “Mechanical behavior of saturated, consolidated, alumina powder compacts: effect of particle size and morphology on the plastic-to-brittle transition,” Colloids Surfaces A: Physicochem. Eng. Aspects, 146, 5-17 (1999).
5.3 S. B. Jhnson, P. J. Scales, T. W. Healy,” The Binding of Monovalent Electrolyte Ions on γ-Alumina. I. Electroacoustic Studies at High Electrolyte Concentrations,” Langmuir, 15, 2836-43 (1999).
5.4 Y. Hirata, J. Kamikakioto, A. Nishimoto & Y. Ishihara, “Interaction Between a-Alumina Surface and Polyacrylic Acid,” J. Ceram. Soc. Jpn., 100 [8], 7-12, (1992).
5.5 W. J. Wei, S. J. Lu, B. Yu, “Characterization of Submicron Alumina Dispersions with Poly(methacrylic acid) Polyelectrolyte,” J. Eur. Ceram. Soc., 15, 155-164 (1995).
5.6 M. Hashiba, H. Okamoto, Y. Nurishi, K. Hiramatsu,” Dispersion of ZrO2.Particles in Aqueous Suspensions by Ammonium Polyacrylate,” J. Mats. Sci., 23, 2893 (1988).
5.7 V. Ramakrishnan, Pradip, S.G. Malghan,” Yield stress of. alumina-zirconia suspensions,” J. Am. Ceram.Soc., 79, 2567-76 (1996).
5.8 Q. Yang, T. Troczynski, J. Am. Ceram. Soc.,” Dispersion of Alumina and Silicon Carbide Powders in Alumina Sol,” 82, 1928-30 (1999).
5.9 A.L. Costa, C. Galassi, R. Greenwood,” α -Alumina-H2O Interface Analysis by
Electroacoustic Measurements,” J. Coll. Interface Sci., 212, 350-56 (1999).
5.10 S. Veeramasuneni, M.R. Yalamanchili, J.D. Miller, J. Coll. Interface Sci.,” Adsorption of Model Collector Colloids at the Surface of Colemanite as Characterized by Optical and Atomic Force Microscopy,” 184, 594 (1996).
5.11 K.F. Hayes, G. Redden, W. Ela, J.O. Leckie, “Surface Complexation Models. I. An Evaluation of Model Parameter Estimation Using FITEQL and Oxide Mineral Titration Data,” J. Coll. Interface Sci., 142, 448-68 (1991).
5.12 K. Vermöhlen, H. Lewandowski, H. D. Narres, and M. J. Schwuger, “Adsorption of Polyelectrolytes on to Oxides — the Influence of Ionic Strength, Molar Mass, and Ca2+ Ions,” Colloids Surf. A, 163, 45-43 (2000).
5.13 J. S. Reed, Principles of ceramics processing ; pp. 158-61, Wiley & Sons , New York , 1995.
5.14鄭存統,“PIM胚料成份間相容性的分子模擬”,國立台灣師範大學化學研究所碩士論文,1999。
5.15 Materials Studio trial version 3.0, tutorial.
5.16 D. A. Litton and S. H. Garofalini, “Molecular Dynamics Simulations of Calcium Aluminosilicate Intergranular films on (0001) Al2O3 Facets,” J. Am. Chem. Soc., 83 [9] 2273-8 (2000).
5.17 H. Napper, Polymeric Stabilization of Colloidal Dispersions; Academic Press, London, U.K., 1983.
5.18 J. F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by Jill Chastain, 1992.
5.19 C.B. Prater, P.G. Maivald, K.J. Kjoller, M.G. Heaton, “Probing Nano-Scale Forces
with the Atomic Force Microscope,” Veeco Metrology Group, Veeco Metrology Group, the world leader in Scanning Probe Microscopy, 1994.
5.20陳志豪,“高分子分散劑的合成以及對於鈦酸鋇粉末的分散性質”,國立台灣師範大學化學研究所碩士論文,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top