Chapter 1
1.1 虞邦英,“鈦酸鋇膠粒於水基溶液中之表面吸附及分散研究”,國立台灣大學科料科學與工程學研究所碩士論文,2001。1.2 陳龍賓,“分散劑的合成以及對於鈦酸鋇粉末的分散性能評估”,國立台灣師範大學化學研究所碩士論文,2002。1.3 應國良,“鈦酸鋇漿體分散劑的合成與應用”,國立台灣師範大學化學研究所碩士論文,2003。
1.4吳杏旋,“添加陰離子型分散之鈦酸鋇漿體在不同 pH 值下的分散行為”,國立台灣師範大學化學研究所碩士論文,2004。1.5陳志豪,“高分子分散劑的合成以及對於鈦酸鋇粉末的分散性質”,國立台灣師範大學化學研究所碩士論文,2005。
Chapter 2
2.1 J. A. Lewis, "Colloidal Processing of Ceramics", J. Am. Ceram. Soc., 83 [10], 2341–59 (2000).
2.2 R. G. Horn, "Surface Forces and Their Action in Ceramics Materials", J. Am. Ceram. Soc., 73 [5], 1117–35 (1990).
2.3 K. N. Israelachvili, Intermolecular and Surface forces, 2nd edition, Academic Press, London, 1992.
2.4 Y. Fukuda, T. Togashi, M. Naito and H. Kamiya, “Analysis of Electrosteric Interaction of Polymer Dispersant in Dense Alumina Suspensions with Different Counter-Ion Densities Using an Atomic Force Microscope,” J. Ceram. Soc. Jpn., 109 [6], 516-20 (2001).
2.5 D. J. Shaw, Introduction to Colloid and Surface Chemistry; pp.176-79, Butterworth-Heinemann, Oxford, 1922.
2.6 D. H. Napper, Polymeric Stabilization of Colloidal Dispersions; Academic Press, London, U.K., 1983.
2.7 I. D. Morrison and S. Ross, Colloidal dispersions suspensions, emulsions, and foams, Wiley-Interscience, New York, pp. 388-89, 2002.
2.8 P. Greil, J. cordelair, A. Bezold, "Discrete Element Simulation of Ceramic Powder Processing , " Z. Metallkd., 92 [7] (2001).
2.9 J. S. Reed, Principles of ceramics processing; pp. 157-58, Wiley & Sons, New York, 1995.
2.10吳杏旋,“添加陰離子型分散之鈦酸鋇漿體在不同 pH 值下的分散行為” 國立台灣師範大學化學研究所碩士論文,2004。
2.11 Zetasizer Nano series technical note, MRK654-01, Malvern Instruments Ltd.
2.12 W. M. Sigmund, "Novel Powder-Processing Methods for Advanced Ceramics," J. Am. Ceram. Soc., 83 [7] 1557–74 (2000).
2.13 Y. Hirata, J. Kamikakioto, A. Nishimoto & Y. Ishihara, “Interaction Between a-Alumina Surface and Polyacrylic Acid,” J. Ceram. Soc. Jpn., 100 [8], 7-12 (1992).
2.14 V. A. Hackley, “Colloidal Processing of Si3N4 with PAA: I, Adsorption and Electrostatic Interactions,” J. Am. Ceram. Soc., 80 [9] 2315–25 (1997).
2.15 W. A. Ducker, T. J. Senden, and R. M. Pashley, “Direct Measurement of Colloidal Forces Using an Atomic Force Microscope,“ Nature (London), 353 [19] 239-41 (1991).
2.16 W. A. Ducker and T. J. Senden, “Measurement of Forces in Liquids Using a Force Microscope,“ Langmuir, 8, 1831-36 (1992).
2.17. H. J. Butt, M. Jaschke, and W. Ducker, “Review: Measuring Surface Forces in Aqueous Electrolyte Solution with the Atomic Force Microscope,” Bioelectrochemistry and Bioenergetics, 38, 191-201 (1995).
2.18 S. Biggs and T. W. Healy, “Electrosteric Stabilization of Colloidal Zirconia with Low Molecular Weight Polyacrylic Acid,” J. Chem. Soc. Faraday Trans., 90 [22] 3415–21 (1994).
2.19 S. Biggs , “Electrosteric Stabilization of Colloidal Zirconia with Low-Molecular-Weight Polyacrylic Acid,” Langmuir, 11, 156-62 (1995)
2.20 I. Larson, c. J. Drummond, D. Y. C. Chan, and F. Grieser, “Direct Force Measurements between Silica and Alumina,” Langmuir, 13, 2109-12 (1997).
2.21 M. Giesbers, J. M. Kleijn, G. J. Fleer, and M. A. C. Stuart, “Forces between Polymer-Covered Surfaces: A Colloidal Probe Study,” Colloids Surf. A, 142, 243-53 (1998).
2.22 H. Kamiya, Y. Fukuda, Y. Suzuki, and M. Tsukada, “Effect of Polymer dispersant Structure on Electrosteric Interaction and Dense Alumina Suspension Behavior,” . Am. Ceram. Soc., 82 [12] 3407-12 (1999).
2.23 Y. Fukuda, T. Togahi, Y. Suzuki, and M. Naito, “Influence of Additive Content of Anionic Polymer Dispersant on Dense Alumina Suspension Viscosity,“ Chem. Eng. Sci., 56, 3005-10 (2000).
2.24 H. G. Pedersen and L. Bergström, “Forces Measured between Zirconia Surfaces in Poly (acrylic acid) Solutions,” J. Am. Ceram. Soc., 82 [5] 1137-45 (1999).
2.25 L. Bergström and E. Blomberg, "Probing Polymeric Stabilization in Nonaqueous Media by Direct Measurements," J. Am. Ceram. Soc., 83 [1] 217–19 (2000).
2.26 E. Laarz, A. Meurk, J. A. Yanez, and L. Bergström, “Silicon Nitride Colloidal Probe Measurements: Interparticle Forces and the Role of Surface-Segment Interactions in Ply (acrylic acid) Adsorption form Aqueous Solution,” J. Am. Ceram. Soc., 84 [8] 1675-82 (2001).
2.27 T. Hassel, P. Greil “Messung Kolloidaler Wechselwirkungen in Keramischen Suspensionen”, Diplomarbeit, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 2001.
2.28 Cesarano III, I. A. Aksay, and A. Blier, “Stability of Aqueous a-Alumina Suspensions with Poly(methacrylic acid) Polyelectrolyte,” J. Am. Ceram. Soc., 71 [4] 250–55 (1988).
2.29 J.Cesarano, I. A. Aksay, “Processing of Highly Concentrated Aqueous α-Alumina Suspensions Stabilized with Polyelectrolytes,” J. Am. Ceram. Soc.,71 [12]1062-67(1988).
2.30 W. J. Wei, S. J. Lu, B. Yu, “Characterization of Submicron Alumina Dispersions with
Poly(methacrylic acid) Polyelectrolyte,” J. Eur. Ceram. Soc., 15, 155-164 (1995).
2.31 E.Luther,J.Yanez,G.Franks,F.Lange,D.Pearson,“Effect of Ammonium Citrate on the Rheology and Particle Packing of Alumina Slurries”, J. Am. Ceram. Soc.,78 [6]1495-500 (1995.)
2.32 Baklouti, C. Pagnoux, T. Chartier& J. F. Baumard, “Processing of Aqueous α-Al2O3, α-SiO2 and α-SiC Suspensions with Polyelectrolytes”, J. Eur. Ceram. Soc., 17, 1387-92 (1997).
2.33. Kamiya, Y.Fukuda, Y. Suzuki, M. Tsukada,“Effect of Polymer Dispersant Structure on Electrosteric Interaction and Dense Alumina Suspension Behavior”, J. Am. Ceram. Soc., 82 [12] 3407-12(1999).
2.34. Santhiya, G. Nandini, S. Subramanian, K. A. Natarajan , S.G. Malghan,“Effect of Polymer Molecular Weight on The Adsorption of Polyacrylic Acid at the Alumina-Water Interface” Colloids Surf. A, 133,157-63 (1998).
2.35 M. Anklekar, S.A. Borkar, S. Bhattacharjee, C. H. Page, A. K. Chatterjee, “Rheology of Concentrated Alumina Suspension to Improve the Milling Output in Production of High Purity Alumina Powder”, Colloids Surf. A, 133, 41-7 (1998).
2.36 Santhiya, S. Subramanian, K. A. Natarajan, S. G. Malghan, “Surface Chemical Studies on the Competitive Adsorption of Poly(acrylic acid) and Poly(vinyl alcohol) onto Alumina”, J. Coll. Interface Sci., 216, 143-53 (1999).
2.37 Davies and J.G.P. Binner, “Coagulation of electrosterically dispersed concentrated alumina suspensions for paste production,” J. Eur. Ceram. Soc., 20, 1555-67 (2000).
2.38 Yuping, J. Dongliang, P. Greil, “Tape casting of aqueous Al2O3 slurries,” J. Eur. Ceram. Soc., 20, 1691-97 (2000).
2.39 Mei, J. Yang, J. M. F. Ferreira,“Effect of Dispersant Concentration on Slip Casting of Cordierite-Based Glass Ceramics”, J. Coll. Interface Sci., 241, 417-21 (2001).
2.40 Tsubaki, M. Kato, M. Miyazawa, T. Kuma, H. Mori,“The Effects of the Concentration of a Polymer Dispersant on Apparent Viscosity and Sedimentation Behavior of Dense Slurries, ” Chem. Eng. Sci., 56, 3021-26 (2001).
2.41 Bertrand , C. Filiatre, H. Mahdjoub, A. Foissy, C. Coddet, “Influence of slurry characteristics on the morphology of spray-dried alumina powders”, J. Eur. Ceram. Soc., 23, 263-71 (2003).
2.42 Baron, C. S. Kumar, G. L. Gonidec, S. Hampshire,“Comparison of different alumina powders for the aqueous processing and pressureless sintering of Al2O3-SiC nanocomposites” J. Eur. Ceram. Soc., 22, 1543-52 (2002).
2.43 A. Pettersson, G. Marino, A. Pursiheimo, J. B. Rosenholm, “Electrosteric Stabilization of Al2O3,ZrO2,and 3Y-ZrO2 Suspensions: Effect of Dissociation and Type of Polyelectrolyte”, J. Coll. Interface Sci., 228, 73-81 (2000)
2.44 G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheujens, T. Cosgrove, and B. Vincent, Polymers at Interfaces. Chapman Hall, London, U.K., 1993.
2.45 Y. C. Zhang, “Scaling Theory of Self-Organized Criticality,” Phys. Rev. Lett. 63 [5] 470-74 (1989).
Chapter 3
3.1 C. Y. Cheng, K. J. Lee, Y. Li, and B. C. Wang, “Molecular Dynamics Simulation of Polymers Adsorbed onto an Alumina Surface,” J. Adhesion Sci. Technol., 12 [7], 695-712 (1998).
3.2 K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, and W. M. Skid, “ UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations,” J. Am. Chem. Soc., 114, 10024-39 (1992).
3.3 C.Y. Wang and D. M. Wang, Diffusion of Drug Molecules in Polymeric Membranes —Molecular Dynamics simulations and Free Volume Theory Analysis, Dissertation, National Taiwan University, Taiwan, 2002.
3.4 K. B. Wiberg, “A scheme for train energy minimization, Application to the cycloalkanes,” J. Am. Chem. Soc., 87, 1070-78 (1965).
3.5 A. L. Tourier, The Role of the Solvent in the Protein Dynamical Transition, dissertation, University of Heidelberg, Germany, 2004.
3.6 B. Hyde, Effects of Carbon on Fracture Mechanisms in Nanocrystalline BCC Iron - Atomistic Simulations, Dissertation, Virginia Polytechnic Institute and State University
, Blacksburg, Virginia, 2004.
3.7 M. P. Allen and D. J. Tildesley, Computer simulation of Liquids, Clarendon Press, Oxford, 1987.
3.8 J. M. Haile, Molecular Dynamics simulation, John Wiley & Sons, New York, 1992.
3.9 B. R. Gelin, Molecular Modeling of Polymer Structures and Properties, Hanser Publishers, Munich, 1994.
3.10 D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San diego, 1996.
3.11 S. Nose, "A molecular dynamics method for simulations in the canonical ensemble", Molec. Phys., 52, 255-268 (1984).
3.12 S. Nose, "A unified formulation of the constant temperature molecular dynamics methods", J. Chem. Phys., 81, 511-519 (1984).
3.13 S. Nose, "Constant temperature molecular dynamics methods", Prog. Theoret. Phys. Supplement, 103, 1-46 (1991).
3.14 D. A. Litton and S. H. Garofalini, “Molecular Dynamics Simulations of Calcium Aluminosilicate Intergranular films on (0001) Al2O3 Facets,” J. Am. Chem. Soc., 83 [9] 2273-8 (2000).
3.15 P. J. Eng,.T. P. Trainor, G. E. Brown Jr., G. A. Waychunas, M. Newville, S. R. Sutton, M. L. Rivers, "Structure of the hydrated a-Al2O3(0001) surface," Science, 288, 1029-33 (2000).
3.16 16 J. Ahn and J. W. Rabalais, "Composition and structure of the Al2O3 {0001}-(1 × 1) surface," Surf. Sci., 388, 121-25 (1997).
3.17 P. Guenard, G. Renaud, A. Barbier, M. Gautier-Soyer, " Determination of the alpha- Al2O3 (0001) surface relaxation and termination by measurements of crystal truncation rods," Surf. Rev. Lett., 5, 321 (1997).
3.18 J. Toofan and P. R. Watson, "The termination of the α-Al2O3 (0001) surface: a LEED crystallography determination," Surf. Sci. 401, 162-65 (1998).
3.19 S. Blonski, S. H. Garofalini, “Molecular dynamics simulations of α-alumina and γ-alumina surface,” Surface Science, 295, 263-74 (1993).
3.20 V. E. Henvich and R. A. Cox, The surface science of metal oxide, Cambridge Univ. Press, 1994.
3.21 陳逸年,“坯料成份給氧化鋁射出成形製程之影響”,國立台灣師範大學化學研究所碩士論文,1997。3.22鄭存統,“PIM胚料成份間相容性的分子模擬”,國立台灣師範大學化學研究所碩士論文,1999。3.23 A. R. Leach, Molecular Modelling: Principles and Applications, Harlow, England ; New York : Prentice Hall, 2001.
Chapter 4
4.1 D. H. Napper, Polymeric Stabilization of Colloidal Dispersions; Academic Press, London, U.K., 1983.
Chapter 5
5.1 B. V. Velamakanni, F. F. Lange, "Effect of Interparticle Potentials and Sedimentation on Particle Packing Density of Bimodal Particle Distributions During Pressure Filtration" J. Am. Ceram. Soc., 74, 166-72 (1991).
5.2 G. V. Franks, F. F. Lange, “Mechanical behavior of saturated, consolidated, alumina powder compacts: effect of particle size and morphology on the plastic-to-brittle transition,” Colloids Surfaces A: Physicochem. Eng. Aspects, 146, 5-17 (1999).
5.3 S. B. Jhnson, P. J. Scales, T. W. Healy,” The Binding of Monovalent Electrolyte Ions on γ-Alumina. I. Electroacoustic Studies at High Electrolyte Concentrations,” Langmuir, 15, 2836-43 (1999).
5.4 Y. Hirata, J. Kamikakioto, A. Nishimoto & Y. Ishihara, “Interaction Between a-Alumina Surface and Polyacrylic Acid,” J. Ceram. Soc. Jpn., 100 [8], 7-12, (1992).
5.5 W. J. Wei, S. J. Lu, B. Yu, “Characterization of Submicron Alumina Dispersions with Poly(methacrylic acid) Polyelectrolyte,” J. Eur. Ceram. Soc., 15, 155-164 (1995).
5.6 M. Hashiba, H. Okamoto, Y. Nurishi, K. Hiramatsu,” Dispersion of ZrO2.Particles in Aqueous Suspensions by Ammonium Polyacrylate,” J. Mats. Sci., 23, 2893 (1988).
5.7 V. Ramakrishnan, Pradip, S.G. Malghan,” Yield stress of. alumina-zirconia suspensions,” J. Am. Ceram.Soc., 79, 2567-76 (1996).
5.8 Q. Yang, T. Troczynski, J. Am. Ceram. Soc.,” Dispersion of Alumina and Silicon Carbide Powders in Alumina Sol,” 82, 1928-30 (1999).
5.9 A.L. Costa, C. Galassi, R. Greenwood,” α -Alumina-H2O Interface Analysis by
Electroacoustic Measurements,” J. Coll. Interface Sci., 212, 350-56 (1999).
5.10 S. Veeramasuneni, M.R. Yalamanchili, J.D. Miller, J. Coll. Interface Sci.,” Adsorption of Model Collector Colloids at the Surface of Colemanite as Characterized by Optical and Atomic Force Microscopy,” 184, 594 (1996).
5.11 K.F. Hayes, G. Redden, W. Ela, J.O. Leckie, “Surface Complexation Models. I. An Evaluation of Model Parameter Estimation Using FITEQL and Oxide Mineral Titration Data,” J. Coll. Interface Sci., 142, 448-68 (1991).
5.12 K. Vermöhlen, H. Lewandowski, H. D. Narres, and M. J. Schwuger, “Adsorption of Polyelectrolytes on to Oxides — the Influence of Ionic Strength, Molar Mass, and Ca2+ Ions,” Colloids Surf. A, 163, 45-43 (2000).
5.13 J. S. Reed, Principles of ceramics processing ; pp. 158-61, Wiley & Sons , New York , 1995.
5.14鄭存統,“PIM胚料成份間相容性的分子模擬”,國立台灣師範大學化學研究所碩士論文,1999。
5.15 Materials Studio trial version 3.0, tutorial.
5.16 D. A. Litton and S. H. Garofalini, “Molecular Dynamics Simulations of Calcium Aluminosilicate Intergranular films on (0001) Al2O3 Facets,” J. Am. Chem. Soc., 83 [9] 2273-8 (2000).
5.17 H. Napper, Polymeric Stabilization of Colloidal Dispersions; Academic Press, London, U.K., 1983.
5.18 J. F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, edited by Jill Chastain, 1992.
5.19 C.B. Prater, P.G. Maivald, K.J. Kjoller, M.G. Heaton, “Probing Nano-Scale Forces
with the Atomic Force Microscope,” Veeco Metrology Group, Veeco Metrology Group, the world leader in Scanning Probe Microscopy, 1994.
5.20陳志豪,“高分子分散劑的合成以及對於鈦酸鋇粉末的分散性質”,國立台灣師範大學化學研究所碩士論文,2005。