跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳黼澤
研究生(外文):Fu-Je Chen
論文名稱:鎳磷與鈷磷合金電鍍
論文名稱(外文):Electrodeposition of Nickel-Phosphorus and Cobalt-Phosphorus Alloys
指導教授:林招松林招松引用關係
指導教授(外文):Chao-Sung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:153
中文關鍵詞:鎳磷合金鈷磷合金胺基磺酸鎳胺基磺酸鈷電流效率脈衝電鍍糖精
外文關鍵詞:Ni-P electrodepositCo-P electrodepositNickel sulfamate bathCobalt sulfamate bathcurrent efficiencypulse electroplatingsaccharin
相關次數:
  • 被引用被引用:11
  • 點閱點閱:1391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎳磷與鈷磷合金鍍層之性質取決於其磷含量和微結構。本研究分別於胺基磺酸鎳與胺基磺酸鈷溶液中添加0~40g/l亞磷酸,藉由直流電鍍製備鎳磷與鈷磷合金,發現鍍層磷含量會隨著鍍液中亞磷酸濃度增加而遞增,然而陰極電流效率卻隨鍍液中亞磷酸濃度增加而遞減。鍍層微結構之演變隨鍍層磷共鍍量的增加,依序從純鎳與純鈷之柱狀晶轉為層、柱共存的組織,再轉變為細緻的層狀結構,最後形成非晶質結構,鍍層微結構及電鍍過程中氫的還原會影響鍍層之硬度與內應力。鎳磷合金在低於400℃熱處理1小時後,硬度因含磷化合物的析出而增加,同時鍍層磷含量愈多會有較多含磷化合物的析出,阻礙晶粒成長而保有較高的高溫強度,熱處理溫度超過500℃時,鎳基地晶粒與Ni3P的成長導致鍍層硬度下降。鈷磷合金熱處理時,在鈷基地中會有大量的退火雙晶生成,所以鈷磷合金抗高溫軟化能力優於鎳磷合金。
脈衝電鍍能夠提高鍍層磷含量並改善電流效率與內應力。低負載率可製備高磷含量鍍層,同時保有高電流效率。低負載率為10%時,晶粒尺寸則隨著脈衝頻率的增加而變大,鍍層內應力隨著脈衝頻率的增加而有降低的趨勢。糖精的添加會改變鎳磷鍍層電化學的結晶行為,雖有助於降低鍍層內應力,但有機分子吸附在電極表面,使鍍液中亞磷酸根離子不容易吸附並還原,造成鍍層磷共鍍量大幅降低。
Properties of Ni-P and Co-P electrodeposits can be best related to the phosphorus content and microstructure of the deposit. In this study, Ni-P and Co-P deposits were electroplated using the direct current in nickel and cobalt sulfamate solutions, respectively, with the addition of 0~40 g l-1 phosphorous acid (H3PO3). Experimental results indicate that deposit phosphorus content increased, while the current efficiency decreased with increasing bath H3PO3 concentration. Concomitant with the increase in deposit phosphorus content, the structure of the deposit evolved from coarse columnar grains for pure Ni and Co deposits to the mixture of column and laminate, then fine laminates, and finally amorphous structure. Both the deposit microstructure and proton discharge during electroplating affected the hardness and internal stress of the deposits. The hardness of Ni-P electrodeposits increased after 1 h of annealing at temperatures less than 400℃. This increase is due to the precipitation of P-bearing compounds. More P-bearing compounds precipitated and effectively inhibited the growth of recrystallized Ni grains for the deposit with higher phosphorus contents. Consequently, the deposit with more phosphorus generally exhibited higher peak hardness after 1 h of annealing at distinct temperatures. When annealing at temperatures exceeding 500℃, growth of Ni grains and coarsening of Ni3P precipitates prevailed; thereby resulting in a decrease in deposit hardness. Co-P deposits generally had higher softening temperature than Ni-P deposits because after annealing numerous twins formed in Co grains, while Ni grains were rather free of crystalline defects.
Unlike dc electroplating, pulse electroplating enhanced the codeposition of phosphorus. And most importantly, pulse plating improved the current efficiency and reduced the internal stress associated with the deposit. Deposits containing high phosphorus contents could be plated under high current efficiency using the low duty cycle pulse currents. Furthermore, for the pulse currents with low duty cycle, namely 10%, both the grain size and internal stress of the deposit decreased with increasing pulse frequencies. The presence of saccharin in the solution modified the electrocrystallization of Ni-P deposit and reduced the internal stress of the deposit. Adsorption of this organic molecule, however, impeded adsorption and subsequent reduction of H3PO3. Therefore, less phosphorus was codeposited when saccharin was added to the solution.
中文摘要………………………………………………………………i
英文摘…………………………………………………………………ii
誌謝……………………………………………………………………iv
目錄……………………………………………………………………v
表目錄…………………………………………………………………ix
圖目錄…………………………………………………………………x

第一章 導論……………………………………………………1
1.1前言…………………………………………………………1
1.2研究動機……………………………………………………2

第二章 文獻探討………………………………………………4
2.1電鍍基本原理………………………………………………4
2.2合金電鍍之電解定律與電流效率…………………………6
2.3電鍍液系統與操作參數對鍍層磷含量與微結構之影……8
2.3.1鍍液系統之種類與鎳磷鍍層中磷的來源………………8
2.3.2電鍍操作條件對鎳磷鍍層的磷含量與陰極電流效率之影
響…………………………………………………………9
2.3.3鍍液pH值之影響…………………………………………10
2.3.4鎳磷鍍層之結構…………………………………………10
2.4鎳磷共鍍機制………………………………………………12
2.5電鍍的電結晶過程…………………………………………16
2.6鎳磷合金之高溫退火相變態………………………………17
2.7脈衝參數對電沉積過程之影響……………………………20
2.8鍍層內應力…………………………………………………22
2.9有機添加劑之影響…………………………………………24
2.10 鈷磷合金…………………………………………………25

第三章 實驗方法………………………………………………27
3.1實驗設備……………………………………………………28
3.2鍍前處理……………………………………………………31
3.2.1鍍液組成與功用…………………………………………31
3.2.2電鍍液配置………………………………………………33
3.2.3陰極前處理………………………………………………33
3.2.4陽極前處理………………………………………………35
3.3熱處理………………………………………………………36
3.4鍍層分析之各類試片製作…………………………………37
3.4.1鍍層成份分析試片製備…………………………………37
3.4.2微硬度試驗與橫截面金相試片…………………………37
3.4.3 XRD試片製備……………………………………………38
3.4.4穿透式電子顯微鏡試片製作……………………………39
3.5鍍層內應力量測……………………………………………41

第四章 實驗結果………………………………………………44
4.1直流電鍍鎳磷合金…………………………………………44
4.1.1胺基磺酸鎳鍍液中亞磷酸濃度對鍍層成份與電流效率
之影響……………………………………………………44
4.1.2鎳磷鍍層橫截面OM金相…………………………………46
4.1.3鎳磷鍍層XRD分析 ………………………………………48
4.1.4鎳磷鍍層橫截面TEM ……………………………………50
4.1.5鎳磷鍍層硬度與內應力…………………………………55
4.1.6鎳磷鍍層之高溫行為……………………………………57
4.2脈衝電鍍鎳磷合金…………………………………………73
4.2.1鎳離子濃度對鍍層磷含量與電流效率之影響…………73
4.2.2電源型式對鎳磷鍍層磷含量與電流效率之影響………77
4.2.3脈衝頻率對鍍層磷含量與電流效率之影響……………80
4.2.4脈衝電鍍鎳磷合金鍍層橫截面TEM ……………………84
4.2.5脈衝參數對鎳磷鍍層內應力之影響……………………87
4.2.6糖精對鎳磷鍍層性質之影響……………………………90
4.3直流電鍍鈷磷合金…………………………………………93
4.3.1胺基磺酸鈷鍍液中亞磷酸濃度對鍍層成份與電流效率
之影響……………………………………………………93
4.3.2鈷磷鍍層橫截面OM金相 ………………………………95
4.3.3鈷磷鍍層XRD分析 ………………………………………98
4.3.4鈷磷鍍層橫截面TEM……………………………………100
4.3.5鈷磷鍍層硬度 …………………………………………107
4.3.6鈷磷鍍層之高溫行為 …………………………………109

第五章 討論 …………………………………………………124
5.1直流電鍍製程 ……………………………………………124
5.1.1亞磷酸濃度對鎳磷與鈷磷鍍層磷含量與電流效率之影
響 ………………………………………………………124
5.1.2鎳磷與鈷磷合金層狀結構形成之因素 ………………124
5.1.3鍍層內應力之形成因素 ………………………………128
5.1.4鍍層機械性質 …………………………………………134
5.2脈衝電鍍製程 ……………………………………………135
5.2.1鍍層磷含量之增加 ……………………………………135
5.2.2電流效率之改善 ………………………………………136
5.2.3內應力之降低 …………………………………………140
5.3有機添加劑之影響 ………………………………………141

第六章 結論 …………………………………………………142

第七章 未來展望.……………………………………………145

參考文獻………………………………………………………146
1. F. A. Lowenheim, Electroplating: Fundamentals of Surface Finishing, 1st ed., McGraw-Hill, 1978, pp. 540-541.
2. L. T. Romankiw, “A Path : From Electroplating Through Lithographic Masks in Electronics to LIGA in MENS,” Electrochimica Acta, Vol. 41, Nov.20-22, 1997, pp. 2985 –3005.
3. A. Maner, S. Harech and W. Ehrfeld, “Mass Production in Microdevices With Extreme Aspect Ratio by Electroforming,” Plating and Surface Finishing, Vol. 78, March 1988, pp. 60-65.
4. 周敏傑、呂春福、王紀雯、何淑玲、葉信宏, “微結構之合金電鑄技術,” 機械工業雜誌, 1998年8月號, pp. 150 –157.
5. C. S. Lin, P. C. Hsu and K. C. Peng, L. Chang and C. H. Chen, “Annealing Behavior of Nickel Electrodeposited from Sulfamate Bath at Different Temperatures,” Materials Transactions, JIM, Vol. 42, No. 2, 2001, pp. 316-322. (SCI)
6. D. Baudrand, “Nickel Sulfamate Plating, Its Mystique and Practicality,” Metal Finishing, Vol. 94, July 1996, pp. 15-18.
7. D. S. Lashmore and J. F. Weinroth “ Pulsed Electrodeposition of Nickel-Phosphorus Metallic Glass Alloys”, Plat. Surf. Finish., Vol. 69, 1982, pp. 72-76.
8. A. Bai, P. Y. Chuang, C. C. Hu, “The Corrosion Behavior of Ni-P Deposits with High Phosphorus Contents in Brine Media,” Materials Chemistry and Physics, Vol. 82, 2003, pp.93-100.
9. M. Thoma, “A Cobalt/Chromic Oxide Composite Coating for High-Temperature Wear Resistance,” Plat. Surf. Finishing, Vol. 71, No. 3, 1984, pp. 51-53.
10. I. Paseka, “Evolution of Hydrogen and its Sorption on Remarkable Activity Amorphous Smooth Ni-P(x) Electrode,” Electrochim. Acta, Vol. 40, No. 11, 1995, pp. 1633-1640.
11. R. K. Shervedani and A. Lasia, “Studies of the Hydrogen Reaction on Ni-P Electrodes,” J. Electrochem. Soc., Vol. 144, No.2, 1997, pp.511-519.
12. G. Lu, P. Evans. and G. Zangari, “Electrocatalytic Properties of Ni-Based Alloy Toward Hydrogen Evolution Reaction in Acid Media,” J. Electrochem. Soc., Vol. 150, No.5, 2003, pp.551-557.
13. T. Burchardt, “Hydrogen Evolution on NixP Alloys: The Influence of Sorbed Hydrogen,” Int. J. Hydrogen Energy, Vol. 26, 2001, pp.1193-1198.
14.李友遐、高誠輝、林有希、柳麗娜, “非晶態鎳磷鍍層析氫陰極活性的控制與機理,” 材料保護, 2004年1月, 第37卷, 第1期, pp. 29-31.
15.肖友軍、鍾一平, “Ni-La-P 合金電鍍及其析氫電催化性能研究,” 表面技術, 2003年10月, 第32卷, 第5期, pp. 31-42.
16.汪繼紅、費錫明, “稀土在鍍Ni-P合金中的應用,” 材料保護, 2003年1月, 第36卷, 第1期, pp. 31-33.
17. B. P. Daly and F. J. Barry, “Electrochemical Nickel-Phosphorus Alloy Formation,” International Materials Reviews, Vol.48, 2003, pp. 326-338.
18.張允誠、胡如南、向榮,“電鍍手冊(上冊)”,第二版,國防工業出版社,北京,1997年.
19.鄧伊浚,“電鍍鎳鈷與鎳鐵合金組織與機械性質之研究”,大葉大 學機械工程研究所碩士論文, 2003年6月.
20.許倍誠,“電鍍鎳組織與機械性質之研究”,大葉大學機械工程研究所碩士論文, 2000年2月.
21. J. L. Carbajal and R. E. White, “Electrochemical Production and Corrosion Testing of Amorphous Ni-P,” J. Electrochem. Soc., Vol.135, 1988, pp. 2952-2957.
22. M. Ratzker, D. S. Lashmore and K. W. Pratt, “Electrodeposition and Corrosion Peformance of Nickel-Phosphorus Amorphous Alloys,” Plating and Surface Finishing, Vol. 76, September 1986, pp. 74-82.
23. R. L. Zeller, III and U. Landau, “Electrodeposition of Ni-P Amorphous Alloys,” J. Electrochem. Soc., Vol. 139, 1992. pp. 3464-3469.
24. J. Crousier, Z. Hanane and J-P. Crousier, “Electrodeposition of NiP Amorphous Alloys. A Multilayer Strusture,” Tin Solid Films, Vol. 248, 1994, pp. 51-56.
25. M. M. V. Parente, O. R. Mattos, S. L. Diaz, P. Lima Neto and F. J. Fabbi Miranda, “Electrochemical Characterization of Ni-P and Ni-Co-P Amorphous Alloy Deposits Obtained by Electrodeposition,” J. Applied Electrochemistry, Vol. 31, 2001, pp. 677-683.
26. G. McMahon and U. Erb, “Structural Transitions in Electroplated Ni-P Alloys,” J. Materials Science Letters, Vol. 8, 1989, pp. 865-868.
27. E. Toth-Kadar, I. Bakonyi, A. Solyom, J. Hering and G. Konczos, “Preparation and Characterization of Electrodeposited Amorphous Ni-P Alloys,” Surface and Coating Technology, Vol. 31, 1987, pp. 31-43.
28. R. Rajnarayan and M. N. Mungole, “Electrodeposition of Ni-P Alloy Coatings,” Surface Technology, Vol. 24, 1985, pp. 233-239.
29. I. Ogno, H. Ohfuruton and S. Haruyama, “Electrodeposition of Ni-P Alloys with Pulsating Current,” 日本金屬學會誌,Vol. 50, 1986, pp. 1075-1080.
30. T. Morikawa, T. Nakade, M. Yokoi, Y. Fukumoto and C. Iwakura, “Electrodeposition of Ni-P Alloys from Ni-Citrate Bath,” Electrochimica Acta, Vol. 42, 1997, pp. 115-118.
31. T. M. Harris and Q. D. Dang, “The Mechanism of Phosphorus Incorporation during the Electrodeposition of Nickel-Phosphorus Alloys,” J. Electrochem. Soc., Vol. 140, 1993, pp. 81-83.
32. A. Kawashima, Y. P. Lu, H. Habazaki, K. Asama and K. Hashimoto, “Structure and Corrosion Behavior of Electro-Deposited Ni-P Alloys,” Corrosion Engineering, Vol. 38, 1989, pp. 643-653.
33. E. Bredael, B. Blanpain, J. P. Celis and J. R. Roos. “On the Amorphous and Crystalline State of Electrodeposited Nickel-Phosphorus Coatings,” J. Electrochem. Soc., Vol. 141, 1994, pp. 294-299.
34. E. Vafaei-Makhsoos, E. L. Thomas and L. E. Toth, “Electron Microscopy of Crystalline and Amorphous Ni-P Electrodeposited Films: In-Situ Crystallization of an Amorphous Solid,” Metallurgical Transactions A, Vol. 9A, 1978, pp. 1449-1460.
35. E. Vafaei-Makhsoos, “Dependence of Dendritic Morphology on Crystal Structure in partially Crystallized Amorphous Ni-P Thin Films,” J. Materials Science, Vol. 16, 1981, pp. 2103-2108.
36. K. Shimizu, G. E. Thompson, G. C. Wood and K. Kobayashi, “Cross-sectional Transmission Electron Microscopy of Electrodeposited Ni-P Alloys,” Philosophical magazine, Vol. 61, 1990, pp. 43-48.
37. P. K. Ng, D. D. Snyder, J. LaSala, B. Clemens and C. Fuerst, “Structure and Crystallization of Nickel-Phosphorus Alloys Prepared by High-Rate Electrodeposition,” J. Electrochem. Soc., Vol.135, 1988, pp. 1376-1381.
38. A. Brenner, Electrodeposition,of Alloys Vol. II, Academic Press, New York, 1963, pp.457.
39. K. Masui, T. Nomura, S. Kwon and D. Chang, “The Mechanism of Ni-P Alloy Deposition by Electroplating Method,” 表面技術, Vol. 43, 1992, pp. 195-199.
40. T. Morikawa, M. Yokoi, S. Shiroma, S. Eguchi and E. Kousai, “Electroplating of Ni-P Alloys from Ni-Citrate Bath,” 表面技術, Vol. 43, 1992, pp. 353-354.
41. Y. Zeng and S. Zhou, “In Situ Surface Raman Study Of The Phosphorus Incorporation Mechanism During Electrodeposition Of Ni-P Alloys ,” Journal of Electroanalytical Chemistry, Vol. 469, 1999, pp. 79-83.
42.李鴻年、張紹恭、張炳乾、宋子玉,實用電鍍工藝,第一版,國防工業出版社,北京,1990.
43. T. B. Massalski, J. L. Murrary, L. H. Bennett and H. Baker, Binary Alloys Phase Diagrams, Metals Park, Ohio, American Society for Metals, 1986.
44. K. Hur, J. Jeong and D. N. Lee, “Microstructure and Crystallization of Electroless Ni-P Deposits,” J. Materials Science, Vol. 25, 1990, pp. 2573-2584.
45. M. H.Seo, J. S. Kim, W. S. Hwang, D. J. Kim, S. S. Hwang and B. S. Chun, “Characteristics of Ni-P Alloy Electrodeposited from A Sulfamate Bath,” Surf. Coat. Technol., Vol. 176, 2004, pp. 135-140.
46. R. Weil, “The Origins of Stress in Electrodeposits, Review of the Literature Dealing with Stress in Electrodeposited Metal,” Plating, Vol. 58, 1971, pp.137-146.
47. C. S. Lin, C. Y. Lee, F. J. Chen, and W. C. Li, “Structural Evolution and Internal Stress of Nickel-Phosphorus Electrodeposits,” J. Electrochem. Soc., Vol. 152, No.6, 2005, pp.370-375.
48. S. Armyanov, “Crystallographic Structure and Magnetic Properties of electrodeposited Cobalt and Cobalt Alloys,” J. Electrochim. Acta, Vol. 45, 2000, pp. 3323-3335.
49. R. D. Fisher and W. H. Chilton, “Preparation and Magnetic Characteristics of Chemically Deposited Cobalt for High-Density Storage,” J. Electrochem. Soc., Vol. 109, No. 6, 1962.
50. T. J. Cheng, J. Jorne and J. S. Gau, “Magnetic Anisotropy of Electrodeposited Cobalt on Alumite Substrate,” J. Electrochem. Soc., Vol. 137, No. 1, 1990, pp.93-95.
51. J. Ahmad, K. Asam, A. Takeuchi, D. V. Louzguine and A. Inoue, “Amorphous Co-Ni-P Alloys with High Saturature Magnetization Produced by Electrodeposition,” Materials Transactions, Vol. 44, No. 5, 2003, pp. 911-916.
52. M. A. Helfand, C. R. Clayton, R. B. Diegle and N. R. Sorense, “The Role of P in the Anodic Inhibition of an Amorphous Co-20P Alloy in Acidic Electrolytes,” J. Electrochem. Soc., Vol. 139, No. 8, 1992, pp.2121-2128.
53. R. B. Diegle and N. R. Sorensen, “An XPS Investigation into the Passivity of an Amorphous Ni-20P Alloy,” J. Electrochem. Soc., Vol. 135, No. 5, 1988, pp.1085-1092.
54. Y. Tsuru, M. Nomura and F. R. Foulkes, “Effect of Boric Acid on Hydrogen Evolution and Internal Stress in Films Deposited from a Nickel Sulfamate Bath,” J. Appl. Electrochem., Vol. 32, 2002, pp. 629-634.
55. J. C. Puippe and F. Leaman, “Thero and Practice of Pulse Plating,” American Electroplaters and Surface Finishers Society, New York, 1986, pp. 17-40.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top