(3.230.76.48) 您好!臺灣時間:2021/04/11 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫安正
研究生(外文):An-Cheng Sun
論文名稱:低序化溫度L10FePt合金薄膜的製備及其應用於垂直磁記錄媒體之研究
論文名稱(外文):Fabrication of low ordering temperature L10 FePt thin films and study of its application in perpendicular magnetic recording media
指導教授:郭博成
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:231
中文關鍵詞:FePt磁性磁記錄垂直磁性質
外文關鍵詞:FePtmagneticmagnetic recordingperpendicular magnetic properties
相關次數:
  • 被引用被引用:8
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分成三部分,分別說明如下:
一、低序化溫度FePt合金薄膜之製備
本實驗以表面自然氧化的(100)指向矽晶圓為基板,鍍製FePt薄膜前,先對基板作300 oC烘烤後再冷卻至常溫,以去除附著在表面的水氣、氧氣等氣體以得到較為潔淨的基板表面後,再以傳統的濺鍍製程鍍製單層FePt薄膜。初鍍FePt薄膜為無序的fcc γ-FePt phase結構,晶粒尺寸大約在4 nm左右,350 oC退火後,開始有L10 FePt phase形成,400 oC退火後,L10 FePt phase已全然形成,並有最高的頑磁力。序化率S方面,L10 FePt phase的序化率會隨著退火溫度的提升而增加, 300 oC時,序化率幾乎等於0,300 oC至400 oC時,薄膜的序化程度有明顯的提升,並在400 oC 時大致序化完成。由TEM 明視野照片所計算出的平均晶粒尺寸結果得知,降低序化溫度有助於L10 FePt phase晶粒尺寸的降低,初鍍的晶粒大小約4 nm,350 oC時晶粒大小約6 nm,400 oC時晶粒大小約9 nm,600 oC時則增加至24 nm,而薄膜厚度太薄也會抑制的晶粒的成長、頑磁力的提升、序化率的增加及fcc γ-FePt phase轉變成有序L10 FePt phase的生成。晶粒尺寸4.5 nm為FePt薄膜是否會序化的臨界尺寸,當晶粒小於4.5 nm時,當晶粒尺寸大於4.5 nm後才會有硬磁性的L10 FePt phase形成,其序化的程度隨晶粒尺寸的增大而增加。經由多項的分析證明,影響L10 FePt phase的序化溫度最主要的參數為FePt薄膜的濺鍍速率及退火條件,其次才是基板表面的清潔處理。本研究利用傳統的濺鍍製程,在經過許多製程參數的調變後,成功的將單層FePt的序化溫度由文獻所記載的500 oC以上降低至350 oC左右。

二、垂直磁異向性FePt合金薄膜之製備
本實驗以表面自然氧化的(100)指向矽晶圓及7059系列的康寧玻璃為基板,在鍍製FePt薄膜前,先對基板作RF power清潔後再以超高真空的濺鍍製程鍍製FePt/Pt/Cr薄膜,實驗結果得知,FePt / Cr雙層薄膜並不會直接引出FePt (001)的垂直磁異向性,因為FePt薄膜會與Cr底層反應而在介面處形成Cr rich的CrFePt的磊晶阻礙層,造成Cr (200)的磊晶效應在介面處被CrFePt合金阻斷,而當Pt緩衝層加入後,Pt緩衝層便扮演一座橋樑的角色,除了阻擋Cr底層原子擴散進FePt磁性層外,還會順利的承接Cr底層的(200)結構,並長成Pt(200)的優選方位,最後FePt磁性層便會沿著Pt(200)的方位而長成L10 FePt (001)的優選方位,使FePt薄膜表現出垂直磁異向性。在我們的實驗中,L10 FePt phase的序化溫度約250 oC,然而Pt緩衝層與FePt磁性層之介面間的原子排列方式也會隨Pt緩衝層厚度的增加而逐漸由半整合性介面調整成完全整合性介面,隨著FePt磁性層厚度的增加,FePt (001)的頑磁力會越來越高,在FePt膜厚約30 nm時有最高的頑磁力,同時保有垂直磁異向性,可是當FePt磁性層厚度超過30 nm時,便開始有FePt (111)的繞射峰形成而逐漸破壞FePt (001)的垂直磁異向性。

三、軟磁穩定層加入之後續效應
FePt / Pt / Cr三層薄膜中加入FeTaC軟磁層後,會破壞FePt (001)的優選方位,使FePt薄膜形成(111)的優選方位,但是再加入一層非晶質的Si3N4薄膜於Cr底層與FeTaC軟磁層的介面上時,Cr(200)及FePt (001)的優選方位會有增強的趨勢,但仍有FePt(111)的繞射封存在。若以Fe當軟磁層時,FePt(001)的優選方位會被保留,但由於軟硬磁之間強烈的耦合效應,或是薄膜的形狀異向性大於FePt(001)的垂直磁晶異向性等原因所致,其垂直方向的磁性質會因軟硬磁之間強烈的耦合效應或較強的形狀異向性的牽引作用而被破壞,使原本垂直膜面的易磁化方向變成了難磁化方向。若以CoCr軟磁合金薄膜當軟磁層,會抑制L10 FePt(001)的強度,並使薄膜產生L10 FePt (111)的繞射峰而破壞垂直磁異向性,但是若再加入一層Cr中間層,則會使Cr中間層沿著CoCr (11-20)的方位再度長成Cr(200)的指向,此新的Cr(200)指向便成為後續L10 FePt(001)優選方位的磊晶來源,成功的引出L10 FePt(001)的優選方位。
There are three subjects in this dissertation, we illustrate them below:

1. Fabrication of low ordering temperature L10 FePt thin films
Polycrystalline Fe52Pt48 alloy thin films were prepared by dc magnetron sputtering on preheated natural-oxidized silicon wafer substrates. The film thickness was varied from 10 to 200 nm. The as-deposited film was encapsulated in a quartz tube and post-annealed in vacuum at various temperatures for 1 hour followed by furnace cooling. Before annealing treatment, the structure of the as-deposited FePt thin films is in fcc FePt phase with ~4 nm grain size. L10 FePt phase with hard magnetic properties began to occur after annealing at 350 oC. FCC FePt phase transform completely into L10 FePt phase after annealing at 400 oC. Therefore, the ordering temperature from as-deposited soft magnetic fcc FePt phase to hard magnetic fct L10 FePt phase could be reduced down to about 350 oC by preheating substrate and furnace cooling treatment. The ordering rate of L10 FePt phase increases with increasing the annealing temperature. The ordering rate is non-existent at 300 oC. However, it is enhanced dramatically when temperature is raised above 300 oC and becomes nearly fully completed at 400 oC. From TEM bright images, it is clear that by lowering the ordering temperature it helps reduce the grain size of L10 FePt thin films. Grain grows from ~6 nm to ~9 nm when the annealing temperature increases from 350 oC to 400 oC. The magnetic properties measurements indicated that the in-plane coercivity of the films increase rapidly as annealing temperature is increased from 300 oC to 400 oC, but decrease when the annealing temperature is higher than 400 oC. The grain growth, in-plane coercivity, ordering rate, and formation of L10 FePt phase are impeded in thinner films. The critical order-disorder transformation in grain size of FePt is about 4.5 nm. L10 FePt phase and hard magnetic properties only occurred when the grain size is larger than 4.5 nm. After annealing at 400 oC, the in-plane coercivity of Fe52Pt48 thin film with film thickness of ~100 nm is 10 kOe, Ms is 580 emu/cm3, and grain size is about 9 nm.
Factors responsible for reducing the order-disordering temperature of L10 FePt phase include higher sputtering rates, lower annealing temperature accompanied with a longer annealing treatment, and substrate preheating. Among these three factors, the higher sputtering rate of FePt plays the dominant role to help reduce the ordering temperature.

2. Study of perpendicular anisotropy of L10 FePt thin films
FePt/Pt/Cr trilayer thin films with perpendicular magnetic properties were deposited on amorphous Corning 7059 glass substrate and natural-oxidized silicon (100) wafer substrates. Before sputtering, the base pressure of the sputtering chamber is better than 5×10-9 Torr. The perpendicular anisotropy of FePt(001) texture was not discernible right after depositing the FePt magnetic layer on top of the Cr(200) underlayer. The Cr-rich epitaxial barrier will be formed at FePt/Cr interface distorting the epitaxial growth of FePt(001) magnetic layer above the Cr(200) underlayer. After inserting a Pt buffer layer at the FePt/Cr interface, perpendicular magnetic properties with FePt(001) preferred orientation was observed. Squareness of the L10 FePt film was close to 1 when a magnetic field was applied perpendicular to the film plane. Pt buffer layer serves as a good barrier to impede diffusion of Cr into the FePt layer and modulate the lattice misfit between Cr underlayer and FePt magnetic layer. Semi-coherent epitaxial growth was initiated from the Cr (002) underlayer, continued through the Pt buffer layer and extended into the L10 FePt (001) magnetic layer. In this investigation, the ordered FePt phase in FePt/Pt/Cr film was found to show up at 250 oC substrate temperature. As the substrate temperature is increased to 300 oC, perpendicular texture and magnetic properties of L10FePt(001) become firmly established. Thus, the formation temperature of the ordered FePt(001) preferred orientation can be identified as low as ~300 oC. This is an important fact may be proven to be very useful for practical industrial perpendicular recording media application.

3. The effects on inserting a soft stability layer in perpendicular FePt/Pt/Cr trilayer thin films
When a FeTaC soft layer was inserted in FePt/Pt/Cr trilayer thin film, the FePt(001) preferred orientation of the FePt/Pt/Cr trilayer thin films become distorted. Both Cr(200) and FePt(001) orientations were enhanced by adding a Si3N4 layer between FeTaC layer and Cr underlayer. FePt(001) texture will be preserved if Fe is used as the soft layer. But, the dominant magnetic properties of the films so prepared were longitudinal. This is due fact that there exists strong exchange coupling between soft and hard magnetic phase and very large shape anisotropy in the film. If a CoCr layer was used instead as the soft layer, the intensity of FePt(001) orientation will be reduced while the that of FePt(111) orientation enhanced. The perpendicular magnetic properties of FePt/Pt/Cr were distorted when CoCr is used as the soft layer. When a Cr intermediate layer was inserted at the interface of Pt/CoCr, the Cr intermediate layer may grow along the CoCr(11-20) texture and obtain the Cr(200) preferred orientation. Thus, depositing FePt/Pt bilayer films on this new Cr intermediate layer will exhibit FePt(001) texture and obtain perpendicular magnetic anisotropy properties again.
摘要
第一章 前言…………………………….……………1
第一章 圖 …………………………….……………5

第二章 理論基礎與文獻回顧……………………….8
2-1 理論基礎…………………………………………………8
2-1-1 高密度磁記錄媒體的要求…………………………………8
2-1-2 水平記錄媒體的極限……………………………………...8
2-1-3 垂直記錄的優點………………………………………....10
2-1-4 FePt合金的優點……………………………………........11
2-1-5 FePt合金之結構……………………................................12
2-1-6 FePt合金薄膜應用於磁記錄媒體的問題.............................13
2-1-7 L10 FePt phase晶粒尺寸的降低...........................................15
2-1-8 FePt合金薄膜產生垂直異向性的方法.................................17
2-1-9 本研究中FePt合金薄膜產生垂直異向性的方法..................19

2-2 文獻回顧............................................................................21
2-2-1 FePt合金薄膜之研究.........................................................21
2-2-2 低溫序化FePt合金薄膜之研究…………..........................26
2-2-3 垂直異向性FePt合金薄膜之研究........................................22

第二章 圖…………………………………………….40

第三章 實驗方法與步驟..................................................55
3-1 實驗流程..........................................................................55
3-2 實驗裝置..........................................................................55
3-2-1 低序化溫度FePt合金薄膜的實驗裝置...............................55
3-2-2 垂直異向性FePt合金薄膜的實驗裝置...............................56

3-3 基板清洗..........................................................................56
3-4 實驗材料選取...................................................................57
3-4-1 低序化溫度FePt合金薄膜的靶材製備...............................57
3-4-2 垂直異向性FePt合金薄膜的材料製備...............................57

3-5 濺鍍前之基板表面處理..................................................59
3-5-1 低序化溫度FePt合金薄膜的基板前處理............................59
3-5-2 垂直異向性FePt合金薄膜的基板前處理............................60

3-6 薄膜濺鍍..........................................................................60
3-6-1 低序化溫度FePt合金薄膜的濺鍍......................................60
3-6-2 垂直異向性FePt合金薄膜的的濺鍍...................................61

3-7 膜厚量測與分析..............................................................63
3-8 結構量測與分析..............................................................64
XRD繞射分析..............................................................................64

3-9 薄膜磁性分析..................................................................64
VSM / SQUID磁性量測................................................................64

3-10 薄膜組成及縱深分析....................................................65
3-10-1 EDS成份分析.................................................................65
3-10-2 ESCA表面分析...............................................................65
3-10-3 AES表面及縱深分析.......................................................66

3-11 薄膜顯微結構分析.........................................................67
3-11-1 SEM微結構觀察...............................................................67
3-11-2 TEM微結構觀察..............................................................67

第三章 圖…………………………………………….71

第四章 低序化溫度FePt合金薄膜之結果與討論….90
4-1 基板表面處理的影響……………………………..…………90
4-1-1 基板表面微結構觀察及EDS成份分析…………..….….…….90
4-1-2 基板表面的TEM橫截面觀察……………………...………….90

4-2 FePt 薄膜的製作……………………...………………….......91
4-3 初鍍FePt薄膜的顯微結構觀察…...………….……….......91
4-3-1 TEM分析…...…………………………………………...….......91
4-3-2 XRD繞射分析……………………………………….......…......92

4-4 初鍍FePt薄膜的表面型態觀察………………........….......92
4-5 初鍍FePt薄膜的磁性質分析……………........…................93
4-6 退火後FePt薄膜的微結構觀察………………........…........93
4-6-1 退火溫度對薄膜結構的影響........….........................................93
4-6-2 退火溫度對晶粒尺寸的影響........….........................................94

4-7 退火後FePt薄膜的表面型態觀察.......................................96
4-8 退火後FePt薄膜的縱深成分分佈.......................................97
4-8-1 基板表面自然氧化矽層中的氧原子的影響.............................97
4-8-2 薄膜表面吸附的氧分子對成分的影響.....................................98

4-9 退火後FePt薄膜的磁性質分析...........................................98
4-9-1 基板烘烤對薄膜磁性質的影響.................................................98
4-9-2 濺鍍速率對薄膜磁性質的影響.................................................99
4-9-3 退火溫度對磁性質的影響.........................................................99
4-9-4 退火溫度對序化程度的影響...................................................101
4-9-5 退火時間對磁性質的影響.......................................................101
4-9-6 薄膜厚度與磁性質的關係.......................................................102
4-9-7 薄膜厚度與序化程度的關係...................................................103
4-9-8 序化率與水平矯頑磁力的關係...............................................103

第四章 圖………………………………………...…105
第五章 垂直磁異向性FePt合金薄膜之結果與討論…………………………………………...124
5-1 Cr(200)底層之製備……………………….…..…...124
5-1-1 基板溫度對Cr底層優選方位的影響…………..……...125
5-1-2 基板偏壓對Cr底層優選方位的影響……………..…...126
5-1-3 氬氣壓力對Cr底層優選方位的影響…………..……...126
5-1-4 濺鍍功率對Cr底層優選方位的影響…………..……...127

5-2 FePt / Cr(200)雙層薄膜…………..………………..127
5-2-1 磁性質…………..………………………………..128
5-2-2 微結構…………..………………………………..129
5-2-3 AES縱深成分分析………………………..………...132

5-3 FePt / Pt / Cr(200)三層膜薄膜………….....………..133
5-3-1 改變Cr底層厚度對FePt (20 nm) / Pt (2 nm) / Cr (0~110 nm)三層薄膜性質的影響………………………..………...133
5-3-2 改變FePt鍍膜溫度對FePt (20 nm) / Pt (2 nm) / Cr (90 nm)三層薄膜性質之影響………………………..…………..141
5-3-3 改變Pt緩衝層厚度對FePt (20 nm) / Pt (0∼5 nm) / Cr (90 nm)三層薄膜性質的影響…………………..…….……...146
5-3-4 改變FePt膜厚對FePt (0∼50 nm) / Pt (3 nm) / Cr (70 nm)三層薄膜性質之影響…………………..………………..149

第五章 圖………………………………………...…153
第六章 加入軟磁穩定層對FePt性質之影響……..258
6-1 加入FeTaC軟磁穩定層對薄膜性質的影響…….…..184
6-1-1 膜層結構…….…………………………………....184
6-1-2 磁性質…….………...…………………………....185
6-1-3 微結構…….………...…………………………....186

6-2 加入Fe軟磁穩定層對薄膜性質之影響…………....189
6-2-1 膜層結構….………...………………………….....189
6-2-2 磁性質….………...……………………………....189
6-2-3 微結構……...……………………………….…....190

6-3 加入CoCr軟磁穩定層對薄膜性質的影響……….....192
6-3-1 膜層結構….………...………………………….....193
6-3-2 磁性質….………...……...…………………….....193
6-3-3 微結構….………...………………...………….....194

第六章 圖………………………………………...…197
第七章 結論……...………………...…………….....216
7-1 低序化溫度FePt合金薄膜……...…………..….....216
7-2 垂直磁異向性FePt合金薄膜之製備………..…......218
7-3 加入軟磁穩定層對薄膜性質之影響….……..….......219

參考文獻…...………………………...………..….......221
[1]M. Yu, Y. Liu, and D. J. Sellmyer, J. Appl. Phys., 87, 6959 (2000).
[2]Dieter Weller, Andreas Moser, Liesl Folks, Margaret E. Eest, Wen Lee, Mike F. Toney, M. Schwickert, Jan-Ulrich Thiele, and Mary F. Doerner, IEEE Trans. Magn., 36, 10 (2000).
[3]M. H. Hong, K. Hono, and M. Watanabe, J. Appl. Phys., 84, 4403 (1998).
[4]T. Suzuki, N. Honda, and K. Ouchi, IEEE Trans. Magn., 35, 2748 (1999).
[5]D. T. Margulies, M. E. Schabes, N. Supper. H. Do, A. Berger, A. Moser, P. M. Rice, P. Aenett, M. Madison, B. Lengsfield, H. Rosen, and Eric E. Fullerton, Appl. Phys. Lett, 85, 6200 (2004).
[6]Toshio Suzuki, Naoki Honda, and Kazuhiro Ouchi, J. Appl. Phys., 85, 4301 (1999).
[7]T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett, 85, 2571 (2004).
[8]C. P. Luo, S. H. Liou, D. J. Sellmyer, J. Appl. Phys., 87, 6941 (2000).
[9]M. Watanabe, T. Nakayama, K. Watanabe, T. Hirayama and A. Tonomura, Mater. Trans., JIM. 37, 489 (1996).
[10]C. M. Kuo, P. C. Kuo, and H. C. Wu, J. Appl. Phys., 85, 2264 (1999).
[11]C. M. Kuo, P. C. Kuo, H. C. Wu, Y. D. Yao, C. H. Lin, J. Appl. Phys., 85, 4886 (1999).
[12]Bo Bain, Kazuhisa Sato, Yoshihiko Hirotsu, and Akihiro Makino, Appl. Phys. Lett, 75, 3686 (1999).
[13]P. C. Kuo, Y. D. Yao, C. M. Kuo, and H. C. Wu, J. Appl. Phys., 87, 6146 (2000).
[14]C. M. Kuo, P. C. Kuo, W. C. Hsu, C. T. Li, and An-Cheng Sun, J. Magn. Magn. Mater., 209, 100 (2000).
[15]S. C. Chen, P. C. Kuo, An-Cheng Sun, C. T. Li, and W. C. Hsu, Materials Science and Engineering, B88, 91 (2002).
[16]J. S. Chen, Yingfan Xu, and J. P. Wang, J. Appl. Phys., 93, 1661 (2003).
[17]Yingfan Xu, J. S. Chen, Daoyang Dai, and J. P. Wang, IEEE Trans. Magn., 38, 2042 (2002).
[18]Yingfan Xu, J. S. Chen, and J. P. Wang, Appl. Phys. Lett, 80, 3325 (2002).
[19]A. C. Sun, P. C. Kuo, S. C. Chen, C. Y. Chou, H. L. Huang, and J. H. Hsu, J. Appl. Phys., 95, 7264 (2004).
[20]Y. K. Takahashi, M. Ohnuma, and K. Hono, J. Appl. Phys. 93, 7580 (2003).
[21]Chih-Huang Lai, Sheng-Han Yang, and C. C. Chiang, Appl. Phys. Lett. 83, 4550 (2003).
[22]Seong-Rae Lee, Sanghyun Yang, Young Keun Kim and Jong Gab Na, Appl. Phys. Lett. 78, 4001 (2001).
[23]Y. K. Takahashi, M. Ohnuma, and K. Hono, J. Magn. Magn. Mater., 246, 259 (2002).
[24]Tomoyuki Maeda, Tadashi Kai, Akira Kikitsu Nagase, and Jun-Ichi Akiyama, Appl. Phys. Lett. 80, 2147 (2002).
[25]T. Maeda, A. Kikitsu, T. Kai, T. Nagase, and J. Akiyama, IEEE Trans. Magn. 38, 2796 (2002).
[26]T. Kai, T. Maeda, A. Kikitsu, J. Akiyama, T. Nagase, and T. Kishi, J. Appl. Phys. 95, 609 (2004).
[27]K. M. Park, K. H. Na, J. G. Na, P. W. Jang, H. J. Kim, and S. R. Lee, IEEE Trans. Magn. 38, 1961 (2002).
[28]Yasushi Endo, Nobuaki Kikuchi, Osamu Kitakami, and Yutaka Shimada, J. Appl. Phys., 89, 7065 (2001).
[29]J. P. Liu, C. P. Luo, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 81, 5644 (1997).
[30]C. P. Luo, and D. J. Sellmyer, IEEE Trans. Magn. 31, 2764 (1995).
[31]C. P. Luo, S. H. Liou, L. Gao, Y. Liu, and D. J. Sellmyer, Appl. Phys. Lett. 77, 2225 (2000).
[32]Xiao-Hong Xu, Hai-Shun Wu, Fang Wang, Xiao-Li Li, Appl. Surf. Sci. 233, 1 (2004).
[33]Chih-Huang Lai, Sheng-Han Yang, C. C. Chiang, T. Balaji, and T. K. Tseng, Appl. Phys. Lett. 85, 4430 (2004).
[34]S. C. Chen, P. C. Kuo, S. T. Kuo, A. C. Sun, C. T. Lie, and C. Y. Chou, Materials Science and Engineering, B98, 244 (2003).
[35]J. Chen, S. Ishio, and S. Sugawara, Thin Solid Films, 426 (2003).
[36]H. H. Hsiao, R. N. Panda, J. C. Shih, and T. S. Chin, J. Appl. Phys., 91, 3145 (2002).
[37]Jhy-Chau Shih, Hsin-Hsin Hsiao, Jai-Lin Tsai, and Tsung-Shune Chun, IEEE Trans. Magn. 37, 1280 (2001).
[38]Y. Z. Zhou, J. S. Chen, G. M. Chow, and J. P. Wang, J. Appl. Phys., 95, 7495 (2004).
[39]Y. F. Ding, J. S. Chen, E. Liu, and J. P. Wang, J. Magn. Magn. Mater., 285, 443 (2005).
[40]Z. L. Zhao, J. P. Wang, J. S. Chen, J. Ding, Appl. Phys. Lett. 81, 3612 (2002).
[41]J. S. Chen, B. C. Lim, and J. P. Wang, Appl. Phys. Lett. 81, 1848 (2002).
[42]Y. Z. Zhou, J. S. Chen, G. M. Chow, and J. P. Wang, J. Appl. Phys. 93, 7577 (2003).
[43]H. Y. Wang, X. K. Ma, Y. J. He, S. Mitani, and Motokawa, Appl. Phys. Lett. 85, 2304 (2004).
[44]K. Leistner, J. Thomas, H. Schlorb, M. Weisheit, L. Schultz, and S. Fahler, Appl. Phys. Lett. 85, 3948 (2004).
[45]Chang Hoi Park, Jong Gab Na, Pyung Woo Jang, and Seong-Rae Lee, IEEE Trans. Magn. 35, 3034 (1999).
[46]Seung-Young Bae, Kyung-ho Shin, Jae-Yoon Jeong, and Jung-Gi Kim, J. Appl. Phys. 87, 6953 (2000).
[47]Kyung-Hwan Na, Jong-Gab Na, Hi-Jung Kim, Pyung-Woo Jang, Jong-Ryoul Kim, and Sung-Rae Lee, IEEE Trans. Magn. 37, 1312 (2001).
[48]Shun-ichi IWASAKI, IEEE Trans. Magn. 38, 1609 (2002).
[49]C. Denis Mee and Eric D. Daniel, “Magnetic recording Technology”, second edition, 1995.
[50]R. Lawrence Comstock, “Introduction to magnetism and magnetic recording”, John Wiley & Sons, 1999.
[51]M. Yu, Y. Liu, A. Moser, D. Weller, and D. J. Sellmyer, Appl. Phys. Lett. 75, 3992 (1999).
[52]B. D. Cullity, “Introduction to Magnetic Materials”, Massachusetts: Addison-Wesley, 1972.
[53]Shun-ichi IWASAKI, IEEE Trans. Magn. 16, 71 (1980).
[54]Toshiyuki Suzuki, IEEE Trans. Magn. 20, 675 (1984).
[55]Shun-ichi IWASAKI, and Yoshihisa Nakamura, IEEE Trans. Magn., 13, 1272 (1977).
[56]Shun-ichi IWASAKI, Kazuhiro Ouchi and Naoki Honda, IEEE Trans. Magn. 16, 1111 (1980).
[57]Shun-ichi IWASAKI, and Yoshihisa Nakamura, IEEE Trans. Magn., 14, 436 (1978).
[58]S. Khizroev, R. M. Chomko, Y. Lin, K. Mountfield, M. H. Kryder, and D. Litvinov, presented at INTERMAG 2000 (CB-07).
[59]Atsushi Kikukawa, Kiwamu Tanahashi, Yukio Honda, Yoshiyuki Hirayama, and Masaaki Futamoto, IEEE Trans. Magn. 37, 1602 (2001).
[60]Takashi Hikosaka, Futoshi Nakamura, Souichi Oikawa, Akihiko Takeo, and Yoichiro Tanaka, IEEE Trans. Magn. 37, 1586 (2001).
[61]Dieter Weller and Andreas Moser, IEEE Trans. Magn. 35, 4423 (1999).
[62]I. Panagiotopoulos, S. Stavroyiannis, D. Niarchos, J. A. Christodoulides and G. C. Hadjipanayis, J. Appl. Phys. 87, 4358 (2000).
[63]Thaddeus B. Massalski, “Binary Alloy Phase Diagrams”, vol 1, American Society For Metals, second printing, 1987.
[64]K. Watanabe, Mater. Trans. JIM. 32, 292 (1991).
[65]C. S. Barred, “Crystal Structure”, p.238 , 1985.
[66]P. Villas, L. D. Calvert, “Pearson’s Handbook of Crystallographic Data for Intermetallic Phase”, 4, ASM Information, 1991.
[67]D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, second edition, 1992.
[68]Y. N. Hsu, S. Jeong, D. E. Laughlin, and D. N. Lambeth, J. Appl. Phys. 89, 7068 ( 2001).
[69]Robert E. Reed-Hill, “Physical metallurgy principles”, third edition, 1992.
[70]T. J. Klemmer, C.Liu, N. Shukla, X. W. Wu, D. Weller, M. Tanase, D. E. Laughlin, and W. A. Soffa, J. Magn. Magn. Mater. 266, 79 (2003).
[71]M. R. Visokay and R.Sinclair, Appl. Phys. Lett. 66, 1692 (1995).
[72]S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Chistodoulides, Y. Yang, and G. C. Hadjipanayis, Appl. Phys. Lett. 73, 3453 (1999).
[73]V. Parasote, M. C. Cadeville, G. Garreau, and E. Beaurepaire, J. Magn. Magn. Mater. 198, 375 (1999).
[74]Y. K. Takahashi, T. Koyoma, M. Ohnuma, T. Ohkubo, and K. Hono, J. Appl. Phys. 95, 2690 (2004).
[75]M. Watanabe, T. Masumoto, D. H. Ping, and K. Hono, Appl. Phys. Lett. 76, 3971 (2000).
[76]Ning Li, Bruce M. Lairson, and Oh-Hun Kwon, J. Magn. Magn. Mater. 205, 1 (1999).
[77]H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, and Z. L. Wang, Appl. Phys. Lett. 80, 2583 (2002).
[78]T. Saito, O. Kitakami, and Y. Shimada, J. Magn. Magn. Mater. 239, 310 (2002).
[79]P. C. Kuo, S. C. Chen, Y. D. Yao, An-Cheng Sun, and C. C. Chiang, J. Appl. Phys., 91, 8638 (2002).
[80]D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, Appl. Phys. Lett. 76, 236 (2000).
[81]D. Ravelosona, C. Chappert, H. Bernas, D. Halley, Y. Samson, and A. Marty, J. Appl. Phys. 91, 8082 (2002).
[82]H. Bernas, J. P. Attane´, K. H. Heinig, D. Halley, D. Ravelosona, A. Marty, P. Auric, C. Chappert, and Y. Samson, Phys. Rev. Lett. 91, 077203-1 (2003).
[83]Sangki Jeong, Anup G. Roy, D. E. Laughlin, and M. E. McHenry, J. Appl. Phys. 91, 8813 (2002).
[84]Shishou Kang, J. W. Harrell, and David E. Nikles, Nono Lett. 2, 1033 (2002).
[85]S. S. Kang, D. E. Nikles, and J. W. Harrell, J. Appl. Phys. 93, 7178 (2003).
[86]Shishou Kang, Zhiyong Jia, David E. Nikles, and J. W. Harrell, IEEE Trans. Magn. 39, 2753 (2003).
[87]T. Yang, E. Ahmad, and T. Suzuki, J. Appl. Phys. 91, 6860 (2002).
[88]H. Zeng, M. L. Yan, N. Powers, and D. J. Sellmyer, Appl. Phys. Lett. 80, 2350 (2002).
[89]Toshio Suzuki, Kiko Harada, Naoki Honda, and Kuzuhiro Ouchi, J. Magn. Magn. Mater. 193, 85 (1999).
[90]Toshio Suzuki and Kuzuhiro Ouchi, IEEE Trans. Magn. 37, 1283 (2001).
[91]Z. G. Zhang, K. Kang, and T. Suzuki, Appl. Phys. Lett. 83, 1785 (2003).
[92]K. Kang, Z. G. Zhang, T. Suzuki, and C. Papusoi, J. Appl. Phys. 95, 7273 (2004).
[93]Takao Suzuki, Zhengang Zhang, Amarendra K. Singh, Jinhua Yin, Alagarsamy Perumal, and Hiroshi Osawa, IEEE Trans. Magn. 41, 555 (2005).
[94]Y. K. Takahashi and K. Hono, Appl. Phys. Lett., 84, 1 (2004).
[95]Takeshi Seki, Toshiyuki Shima, Koki Takanashi, Yukio Takahashi, Eiichiro Marsubara, and Kazuhiro Hono, IEEE Trans. Magn. 40, 2522 (2004).
[96]Y. K. Takahashi, K Hono, T. Shima, K. Takanashi, J. Magn. Magn. Mater. 267, 248 (2003).
[97]Sangki Jeong, Yu-Nu Hsu, David E. Laughlin, and Michael E. McHenry, IEEE Trans. Magn. 36, 2336 (2000).
[98]Sangki Jeong, Michael E. McHenry, and David E. Laughlin, IEEE Trans. Magn. 37, 1039 (2001).
[99]Y. Shimada, T. Sakurai, T. Miyazaki, O. Kitakami, and S. Okamoto, J. Magn. Magn. Mater. 262, 329 (2003).
[100]C. L. Platt, K. W. Wierman, J. K. Howard, A. G. Roy, and D. E. Laughlin, J. Magn. Magn. Mater., 260, 487 (2003).
[101]C. L. Platt, K. W. Wierman, E. B. Svedberg, R. van de Veerdonk, J. K. Howard, A. G. Roy and D. E. Laughlin, J. Appl. Phys. 92, 6104 (2002).
[102]M. M. Schwickert, K. A. Hannibal, M. F. Toney, M. Best, L. Folks, J.-U. Thiele, A. J. Kellock, and D. Weller, J. Appl. Phys. 87, 6956 (2000).
[103]D. Ravelosona, C. Chappert, V. Mathet, and H. Bernas, J. Appl. Phys. 87, 5771 (2000).
[104]K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 82, 3284 (2003).
[105]B. M. Lairson, M. R. Visokay, R. Sinclair, and B. M. Clemens, Appl. Phys. Lett. 62, 639 (1993).
[106]Kazuhisa Sato, Bo Bian, and Yoshihiko Hirotsu, Jpn. J. Appl. Phys. 39, L1121 (2000).
[107]Bo Bian, David E. Laughlin, Kazuhisa Sato, and Yoshihiko Hirotsu, J. Appl. Phys. 87, 6962 (2000).
[108]Kazuhisa Sato, Bo Bian, and Yoshihiko Hirotsu, J. Appl. Phys. 91, 8516 (2002).
[109]Y. Shao, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 93, 8152 (2003).
[110]Yu-Nu Hsu, Sangki Jeong, David E. Laughlin, and David N. Lambeth, J. Magn. Magn. Mater. 260, 282 (2003).
[111]T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, Appl. Phys. Lett. 80, 288 (2002).
[112]T. Seki, T. Shima, K. Takanashi, Y. Takahashi, E. Matsubara, and K. Hono, Appl. Phys. Lett. 82, 2461 (2003).
[113]JCPDS powder diffraction file cards, 1997.
[114]K. Kang, Z. G. Zhang, C. Papusoi, and T. Suzuki, Appl. Phys. Lett. 84, 404 (2004).
[115]R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey and J. K. Howard, J. Appl. Phys. 86, 4527 (1999).
[116]Chih-Ming Kuo and P.C Kuo, J. Appl. Phys. 87, 419 (2000).
[117]J. A. Christodolides, Y. Zhang, G. C. Hadjipanayis, and C. Fountzoulas, IEEE Trans. Magn., 36, 2333 (2000).
[118]J. A. Christodolides, P. Farber, M. Daniil, H. Okumura, G. C. Hadjipanayis, V. Skumryev, A. Simopoulos, and D. Weller, IEEE Trans. Magn., 37, 1292 (2001).
[119]Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, and Andreas Moser, Science, 287, 1989 (2000).
[120]Shouheng Sun, Eric E. Fullerton, Dieter Weller, and C. B. Murray, IEEE Trans. Magn. 37, 1239 (2001).
[121]S. C. Chen, P. C. Kuo, An-Cheng Sun, C. T. Li, and C. C. Chiang, IEEE Trans. Magn., 39, 584 (2003).
[122]Satoru Momose, Hiroyoshi Kodama, Takuya Uzumaki, and Atsushi Tanaka, Appl. Phys. Lett. 85, 1748 (2004).
[123]G. A. Held, Hao Zeng, and Shouheng Sun, J. Appl. Phys. 95, 1481 (2004).
[124]H. Y. Wang, W. H. Mao, X. K. Ma, H. Y. Zhang, Y. B. Chen, Y. J. He, and E. Y. Jiang, J. Appl. Phys. 95, 2564 (2004).
[125]Y. K. Takahashi, T. Koyama, M. Ohnuma, T. Ohkubo, and K, Hono, J. Appl. Phys., 95, 2690 (2004).
[126]S. C .Chen, P. C. Kuo, S. T. Kuo, A. C. Sun, C. Y. Chou, and Y. H. Fang, IEEE Trans. Magn. 41, 915 (2005).
[127]K. R. Coffey, M. A. Parker, and J. K. Howard, IEEE Trans. Magn. 31, 2737 (1995).
[128]Xiangcheng Sun, Shishou Kang, J.W. Harrell, David E. Nikles, Z. R. Dai, J. Li, and Z. L. Wang, J. Appl. Phys. 93, 7337 (2003).
[129]K. W. Wierman, C. L. Platt, J. K. Howard, and F. E. Spada, J. Appl. Phys. 93, 7160 (2003).
[130]B. C. Lim, J. S. Chen, and J. P. Wang, J. Magn. Magn. Mater., 271, 431 (2004).
[131]Hiroyoshi Kodama, Satoru Momose, Toshio Sugimoto, Takuya Uzumaki, and Atsushi Tanaka, IEEE Trans. Magn. 41, 665 (2005).
[132]Hyun Seok Ko, A. Perumal, and Sung-Chul Shin, Appl. Phys. Lett, 82, 2311 (2003).
[133]M. L. Yan, H. Zeng, N. Powers, and D. J. Sellmyer, J. Appl. Phys. 91, 8471 (2002).
[134]C. P. Luo and D. J. Sellmyer, U.S. Patent No. US2001/0036562 A1, Nov.1, (2001).
[135]Y. Huang, H. Okumura, G. C. Hadjipanayis, and D. Weller, J. Magn. Magn. Mater. 242-245, 317 (2002).
[136]Zhengang Zhang, Kyongha Kang, and Takao Suzuki, J. Appl. Phys. 93, 7163 (2003).
[137]C. Y. Chou, P. C. Kuo, Y. D. Yao, S. C. Chen, A. C. Sun, C. T. Lie, J. Appl. Phys. 93, 7205 (2003).
[138]W. C. Chang, D. C. Wu, J. C. Lin, and C. J. Chen, J. Appl. Phys. 79, 5159 (1996).
[139]P. C. Kuo, C. T. Lie, S. C. Chen, T. H. Wu, and L. Y. Chang, J. Appl. Phys. 93, 7777 (2003).
[140]C. T. Lie, P. C. Kuo, and C. L Shen, J. Appl. Phys. 94, 2538 (2003).
[141]B. D. Cullity, Elements of X-ray Diffraction (Addision Wesley, Reading, MA,), 102 (1978).
[142]M. H. Kryder, J. Appl. Phys., 57, 3913 (1985).
[143]D. E. Newbury, D. C. Joy, P. Echlin, C. E. Fiori and J. I. Goldstein, “Advanced Scanning electron Microscopy and X-ray Micro- analysis”, New York: Plenum Press (1987).
[144]M. Thommpson, M. D. Baker, A. Christie and J. F. Tyson, “Auger Electron Spectroscopy”, New York: John Wiley & Sons (1985).

[145]David B. Williams and C. Barry Carter, Transmission Electron Microscopy, New York and London, Plenum Press, 271 (1996).
[146]J. P. Liu, C. P. Luo, Y. Liu, and D. J. Sellmyer, Appl. Phys. Lett., 72, 483 (1998).
[147]S. W. Yung, Y. H. Chang, T. J. Lin, and M. H. Hung, J. Magn. Magn. Mater. 116, 411 (1992).
[148]J. A. Aboaf et al., IEEE Trans. Magn. 20, 1642 (1984).
[149]K. Watanabe and H. Masumoto, Trans., JIM. 26, 362 (1985).
[150]B. W. Robarts, Acta Metall. 2, 597 (1954).
[151]Michael F. Toney, Wen-Yaung Lee, Jonathan A. Hedstrom, and Andrew Kellock, J. Appl. Phys. 93, 9902 (2003).
[152]Chih-Huang Lai, Wei-Chuan Chen, P. H. Tsai, and I. P. Ding, J. Appl. Phys. 93, 8468 (2003).
[153]S. N. Piramanayagam, Y. F. Xu, D. Y. Dai, L. Huang, S. I. Pang, and J. P. Wang, 91, 7685 (2002).
[154]Wei-Chuan Chen, Chih-Huang Lai, P. H. Tsai, and I. P. Ding, IEEE Trans. Magn. 39, 2267 (2003).
[155]James F. Shackelford, Introduction to Materials Science for Engineers, 5th ed. (Prentice-Hall, New Jersey, 2000), p. 117.
[156]G. Gubbiotti, G. Carlotti, J. A. Barnard, J. L. Wwston, and G. Zangari, J. Magn. Magn. Mater. 240, 226 (2002).
[157]J. L. Weston, S. S. Yan, G. Zangari, and J. A. Barnard, J. Appl. Phys. 89, 6831 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔