跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂曉鈴
研究生(外文):Shau-Lin Lu
論文名稱:vasa基因在竹莖扁蚜及豌豆蚜的純化及定性
論文名稱(外文):Isolation and characterization of vasa gene in bamboo stem aphids and pea aphids
指導教授:李後晶李後晶引用關係
指導教授(外文):How-Jing Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:58
中文關鍵詞:竹莖扁蚜豌豆蚜
外文關鍵詞:vasaaphids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大部份動物的初始生殖細胞,在早期的胚胎發育時期,即自體細胞當中分離。這個現象的發現,在於科學家們觀察到生殖細胞特有之電子的緻密物質nuage,會在核膜之周圍聚集。在很多物種中vasa 或其基因的產物是nuage 的成員之一,這意謂vasa 是一個高度保守的生殖細胞標記。我們從竹莖扁蚜(Pseudoregma bambucocla )及豌豆蚜(Acyrthosiphon pisum )中選殖出vasa -like 基因。其中bsavasa 基因被用來作為分辨竹莖扁蚜的兵蚜及非兵蚜若蟲的指標,因為我們假設在不孕的兵蚜中bsavasa 基因的表現可能會少於非兵蚜。在豌豆蚜中,我們想研究pavasa1 基因在卵生成(oogenesis)及胚胎形成(embryogenesis)過程中如何表現,進而瞭解生殖細胞在這兩個過程中是如何發育的。由反轉錄聚合酵素連鎖反應(RT-PCR)的結果中顯示pavasa1 及bsavasa 皆表現於成蟲的卵巢,顯示bsavasa 及pavasa1 可能為生殖細胞的標記基因。然而在竹莖扁蚜的兵的表現被偵測到。我們推測bsavasa 在一齡兵蚜的未退化生殖細胞當中表現,或者bsavasa 在其體細胞亦有表現,因此RT-PCR 出現“bsavasa -positive ”的結果。我們利用北方雜合法(Northern Blot)辨識出bsavasa及pavasa1 的mRNA 約為3 kb,推測其二者長度大約相同。我們並沒有成功的擴增由D.Stern 提供的pavasa1 3 ’端的序列,可能是有大量的poly-A 序列在其3 ′端,消耗掉大量用於3 ′ RACE-PCR 的poly-T 引子。為了知道pavasa1 是否為單(single-copy)基因,我們將豌豆蚜的基因 (genomic DNA)用不同的限制酵素(restriction enzyme)作切割,並用DIG 標記的vasa DNA 作為探針(probe)。結果顯示單一個限制酵素切割後的基因體DNA 只有單一條帶 (single band)被偵測到(HindIII:~6 kb;SpeI:~7kb;EcoRI:~3.5 kb)。由此結果我們可推測pavasa1 是單一基因。比對Pavasa1 及本實驗室選殖的Pavasa2 蛋白質序列,只有38 ﹪相同,並且在N-端之序列呈現分歧,顯示在豌豆蚜基因體中至少有兩個不同的vasa 基因。本文的最後一部分,我們將根據本實驗室所提供的pavasa1 原位雜合結果與抗體染色的數據來討論pavasa1 是否為生殖細胞之標記基因。
Primordial germ cells (PGC) are segregated from somatic cells during early embryogenesis in most animals. The phenomenon is known by the observation of “nuage”, a group of electron-dense materials in the periphery of nuclear membrane. Vasa gene or its product has been known as a component of nuage in many species, showing that it is a conserved germline marker. In our study we cloned vasa-like genes in the bamboo stem aphid Pseudoregma bambucicola (bsavasa) and in the pea aphid Acyrthosiphon pisum (pavasa1). The bsavasa was used to discriminate the soldier and non-soldier nymphs, on the hypothesis that the expression of bsavasa is weaker in sterile soldiers; pavasa1 was used as a marker to study germline development in parthenogenetic aphids because we wanted to know its developmental expression from oogenesis to embryogenesis within an ovariole. RT-PCR shows that vasa mRNA was preferentially identified in the adult ovary, suggesting that it is a potential PGC marker in these two aphid species. However, expression of vasa was detected in soldier and non-soldier nymphs of bamboo stem aphids, implying that either bsavasa is expressed in soldiers’ non-degenerated germ cells or it is also expressed in somatic tissues at the 1st instar nymph. We identified a ~3 kb transcript of vasa with Northern blot in both species of aphids, implying that the length of vasa mRNA may be similar. Our effort to clone the 3’-end sequence of pavasa1 did not work, which was similar to the sequence provided by D. Stern (Princeton, USA). It might be caused by the abundant poly-A sequences scattering at the 3’-end area within the open reading frame, which consumed most of the poly-T primers in the 3’ RACE-PCR. In order to investigate whether pavasa1 is a single-copy gene, blots containing genomes digested respectively with HindIII, SpeI and EcoRI were probed with DIG-labeled vasa genes. Repeated results show that a single band was identified in each lane from different enzyme digestion (HindIII: ∼6kb; SpeI: ∼7 kb; EcoRI: ∼3.5 kb), suggesting that this vasa gene (pavasa1) is single copy. We also compared the deduced protein sequence encoded by pavasa1 with that encoded by pavasa2, a second vasa-like gene cloned in our laboratory. Sequence alignment shows that these two Vasa proteins only have 38% identity and N-terminal sequences appear divergent. It shows that there are at least two different vasa genes existing in the pea-aphid genome. In the last part, we will discuss whether pavasa1 is a germline marker according to the provided results of in situ hybridization and antibody staining.
I. Introduction
A. General background and Research Aims 1
B. Modes of Germline Development 2
C. Vasa Gene and Germline Development 4
II. Materials and Methods
A. Insects 6
B. Total RNA preparation 6
C. Genomic DNA preparation 6
D. Plasmid DNA preparation 7
E. Reverse Transcription 7
F. Polymerase Chain Reaction 8
G. Subcloning 8
H. RACE PCR 9
I. DIG-Labeled DNA Probe Synthesis 10
J. Northern Blot 11
K. Southern Blot 13
III. Results
A. Cloning and Detection of The Expression of Vasa mRNA in The
Bamboo Stem Aphids, Pseudoregma bambucicola 16
B. RACE PCR Cloning and Detection of The Expression of Vasa mRNA
in The Pea aphids, Acyrthosiphon pisum 17
C. Identification The Size of Vasa Transcripts with Northern Blotting 18
D. Examination of Gene Duplication with Southern Blotting 19
IV. Discussion 20
V. References 22
VI. Appendix
A. The Basic Concept of Aphid Biology 31
B. The Bamboo Stem Aphids – Pseudoregma bambucicola 33
C. The Embryogenesis of Aphids 35


Table List

Table 1 The Bsavasa protein sequence blast analysis 38
Table 2 The Pavasa1 protein sequence blast analysis 39
Table 3 The bamboo stem aphid soldier contrast list between primary and secondary host 40
Table 4 Sequence identity (%) between four DEAD-box proteins: Bsavasa, Pavasa1, eIF4A and Rm62 40





Figure List

Fig. 1A Partial sequences of bsavasa and its gene product 41
Fig. 1B Detection of the expression of bsavasa mRNA with RT-PCR 42
Fig. 2 Detection of the expression of bsavasa mRNA with RT-PCR 43
Fig. 3 Detection of the expression of pavasa1 mRNA with RT-PCR 44
Fig. 4 Comparison of Pavasa1 and other insect Vasa protein sequences 45
Fig. 5 Comparison of Pavasa1, Drosophila Vasa and Bombyx mori Vasa protein sequences 46
Fig. 6 Strategies for 3’RACE PCR to clone 3’end sequences of pavasa1 gene 47
Fig. 7 Plasmid map of pavasa1 F864-R1439 in the pGEM-T easy vector 48
Fig. 8 PCR-synthesis of the DIG-labeled DNA probes 49
Fig. 9 Northern blots containing total RNA probed with pavasa1 (F864-R1439) DIG-labeled DNA 50
Fig. 10 Northern blots containing total RNA probed with pavasa1 (F484-R1439) DIG-labeled DNA 51
Fig. 11 Northern blot for the detection of the length of the bamboo stem aphid vasa (bsavasa) transcript 52
Fig. 12 Southern blotting results 53
Fig. 13 Comparison of Pavasa1 and Pavasa2 protein sequences 54
Fig. 14 Southern blots hybridized with DIG-labeled pavasa1 and pavasa2 probes 55
Fig. 15 Expression of pavasa1 mRNA in the germarium, oocyte and embryos 56
Fig. 16 The pea aphid’s ovary staining with Formosa 2 antibody 57
Fig. 17 The life cycle of Pseudoregma bambucicola in Taiwan 58
Aoki, S. 1976. Occurrence of dimorphism in the first instar larva of Colophina clematis (Homoptera, Aphidoidea). Kontyu 44:130-137.
Aoki, S. 1977. Colophina clematis (Homoptera, Pemphigidae), an aphid species with ''soldiers''. Kontyu 45:276-282.
Aoki, S. 1987. Evolution of sterile soldiers in aphids. In animal Societies: Theories and Facts (ed. Y. Ito, J. L. Brown and J. Kikawa). Japan Sci. Soc. Press, Tokyo. pp:53-65.
Aoki, S., S. Akimoto, and S. Yamane. 1981. Observation on Pseudoregma alexanderi (Homoptera, Pemphigidae), an aphid species producing pseudoscorpion-like soldiers on bamboos. Kontyu 49:355-366.
Aoki, S., and U. Kurosu. 1989. Two kinds of soldiers in the tribe Cerataphidini (Homoptera: Aphidoidea). Journal of Aphidology 3:1-7.
Aoki, S., and U. Kurosu. 1992. Gall generations of the soldier-producing aphid Pseudoregma bambucicola (Homoptera). Jpn. J. Entomol. 60:359-368.
Aoki, S., U. Kurosu, and S. Usuba. 1984. First instar larvae of the sugar-cane wooly aphid, Ceratovacuna lanigera (Homoptera, Pemphigidae), attack its predators. Kontyu 52:458-460.
Bachvarova, R. F., T. Masi, M. Drum, N. Parker, K. Mason, R. Patient, and A. D. Johnson. 2004. Gene expression in the axolotl germ line: Axdazl, Axvh, Axoct-4, and Axkit. Dev. Dyn. 231:871-880.
Bethesda, M. 2005. NHGRI Targets 12 More Organisms for Genome Sequencing. Strategic Mix Includes Marmoset, Skate and the vector of Chagas'' disease. National Institutes of Health NIH NEWS RELEASE.:Mar. 1.
Blackman, R. L. 1978. Early development of the parthenogenetic egg in three species of aphids (Homoptera: Aphididae). Int. J. Insect Morphol. and Embryol. 7:33-44.
Blackman, R. L. 1987. Reproduction, cytogenetics and development. In Minks A. K. and Harrewijn P. (eds): Aphids, Their Biology, Natural Enemies and Control. Vol. 2A. Elsevier, Amsterdam. pp:163-195.
Blackman, R. L., and V. F. Eastop. 1984. Aphids on the World''s Crops, An Identification and Information Guide. John Wiley and Sons Ltd., Chichester. pp:466.
Blackman, R. L., and V. F. Eastop. 1994. Aphids on the world''s Trees: an Identification and Information Guid. CAB international, Wallingford.
Blackman, R. L., and D. F. Hales. 1986. Behaviour of the X chromosomes during growth and maturation of parthenogenetic eggs of Amphorophora tuberculata (Homoptera, Aphididae), in relation to sex determination. Chromosoma 94:59-64.
Buning, J. 1985. Morphology, Ultrastructure, and Germ cell Cluster Formation in Ovarioles of Aphids. J. Morph. 186:209-221.
Campbell, B. C., and W. D. Nes. 1983. A reappraisal of sterol biosynthesis and metabolism in aphids. J. Insect Physiol. 29:149-156.
Castrillon, D. H., B. J. Quade, T. Y. Wang, C. Quigley, and C. P. Crum. 2000. The human VASA gene is specifically expressed in the germ cell lineage. Proc. Natl. Acad. Sci. U. S. A. 97:9585-9590.
Chang, C. C., P. Dearden, and M. Akam. 2002. Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev. Biol. 252:100-118.
Dearden, P., M. Grbic, and C. Donly. 2003. Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev. Genes. Evol. 212:599-603.
Dixon, A. F. G. 1985. Aphid Ecology. Blackie and Son Limited, Glasgow.
Donnell, D. M., L. S. Corley, G. Chen, and M. R. Strand. 2004. Caste determination in a polyembryonic wasp involves inheritance of germ cells. Proc. Natl. Acad. Sci. U. S. A. 101:10095-10100.
Douglas, A. E. 1990. Nutritional interactions between Myzus persicae and its symbionts. In Campbell R. K. and Eikenbary R. D. (eds): Aphid-Plant Genotype Interactions. Elsevier, Amsterdam pp:319-327.
Douglas, A. E., and W. A. Prosser. 1992. Synthesis of the essential amino acid tryptophan in the pea aphid (Acyrthosiphum pisum) symbiosis. J. Insect Physiol. 38:565-568.
Dworkin, M. B., and E. Dworkin-Rastl. 1990. Functions of maternal mRNA in early development. Mol. Reprod. Dev. 26:261-297.
Eastop, V. F. 1977. Worldwide importance of aphids as virus vectors. In "Aphids as Virus Vectors" Ed by KF Harris, K Maramorosch. Academic Press, New york pp:3-62.
Eddy, E. M. 1974. Fine structural observations on the form and distribution of nuage in germ cells of the rat. Anat. Rec. 178:731-757.
Ephrussi, A., and R. Lehmann. 1992. Induction of germ cell formation by oskar. Nature 358:387-392.
Extavour, C. G., and M. Akam. 2003. Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869-5884.
Fabioux, C., A. Huvet, C. Lelong, R. Robert, S. Pouvreau, J. Y. Daniel, C. Minguant, and M. Le Pennec. 2004. Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem. Biophys. Res. Commun. 320:592-598.
Fujimura, M., and K. Takamura. 2000. Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells and its mRNA localization in the posterior-most blastomeres in early embryos. Dev. Genes Evol. 210:64-72.
Fukatsu, T., S. Aoki, U. Kurosu, and H. Ishikawa. 1994. Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: Implications for host-symbiont coevolution and evolution of sterile soldier castes. Zoological Science II:613-623.
Fukatsu, T., and H. Ishikawa. 1992a. Synthesis and localization of symbionin, an aphid endosymbiont protein. Insect Biochem. Molec. Biol. 22:167-174.
Fukatsu, T., and H. Ishikawa. 1992b. A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphididae). J. Insect Physiol. 38:765-773.
Ghosh, A. K. 1985. Hormaphidinae: distribution, phylogeny and systematics. In "Evolution and Biosystematics of Aphids". Polska Akademia Nauk pp:303-336.
Hales, D. F., J. Tomiuk, K. Wohrmann, and P. Sunnucks. 1997. Evollutionary and genetic aspects of aphid biology: A review. Eur. J. Entomol. 94:1-55.
Hay, B., L. Y. Jan, and Y. N. Jan. 1988. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577-587.
Hay, B., L. Y. Jan, and Y. N. Jan. 1990. Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109:425-433.
Heasman, J., J. Quarmby, and C. C. Wylie. 1984. The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material. Dev. Biol. 105:458-469.
Houk, E. J., and G. W. Griffiths. 1980. Intracellular symbiotes of the Homoptera. Ann. Rev. Ent. 25:161-187.
Houston, D. W., and M. L. King. 2000. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127:447-456.
Hughes, R. N. 1989. A Functional Biology of Clonal Animals. Chapman and Hall, London.331.
Huynh, J. R., and D. St Johnston. 2004. The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr. Biol. 14:R438-449.
Ijichi, N., H. Shibao, T. Miura, T. Matsumoto, and T. Fukatsu. 2004. Soldier differentiation during embryogenesis of a social aphid, Pseudoregma bambucicola. Entomological Science 7:141-153.
Ikenishi, K. 1998. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev. Growth. Differ. 40:1-10.
Ikenishi, K., and T. S. Tanaka. 1997. Involvement of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) in the differentiation of primordial germ cells. Dev. Growth. Differ. 39:625-633.
Ishikawa, H., and H. Hashimoto. 1986. The molecular biology of symbiotic bacteria of aphididae. Microbiol. Sci. 3:117-120.
Ishikawa, H., and M. Yamaji. 1985. Symbionin, an aphid endosymbiont-specific protein I. Production of insects deficient in symbiont. Insect Biochem. 15:155-163.
Ito, Y., S. Tanaka, J. Yukawa, and K. Tsuji. 1995. Factors affecting the proportion of soldiers in eusocial bamboo aphid, Pseudoregma bambucicola, colonies. Ethology Ecology and Evolution 7:335-345.
Jurik, M., V. Mucha, and V. Valenta. 1980. Intraspecies variability in transmission efficiency of stylet-borne viruses by the pea aphid (Acyrthosiphon pisum). Acta. Virol. 24:351-357.
Kobayashi, T., H. Kajiura-Kobayashi, and Y. Nagahama. 2000. Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech. Dev. 99:139-142.
Komiya, T., K. Itoh, K. Ikenishi, and M. Furusawa. 1994. Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev. Biol. 162:354-363.
Komiya, T., and Y. Tanigawa. 1995. Cloning of a gene of the DEAD box protein family which is specifically expressed in germ cells in rats. Biochem. Biophys. Res. Commun. 207:405-410.
Kurosu, U., and S. Aoki. 1988. Monomorphic first instar larvae of Colophina clematicola (Homoptera, Aphidoidea) attack predators. Kontyu 56:876-871.
Kuznicki, K. A., P. A. Smith, W. M. Leung-Chiu, A. O. Estevez, H. C. Scott, and K. L. Bennett. 2000. Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127:2907-2916.
Lasko, P. F., and M. Ashburner. 1988. The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335:611-617.
Lehmann, R., and A. Ephrussi. 1994. Germ plasm formation and germ cell determination in Drosophila. Ciba. Found. Symp. 182:282-296; discussion 296-300.
Lynch, M., and W. Gabriel. 1983. Phenotypic evolution and parthenogenesis. Am. Nat. 122:745-764.
Markovitch, S. 1924. The migration of the Aphididae and the appearance of the sexual forms as affected by the relative length of daily light exposure. J. Agric. Res. 27:513-522.
Matova, N., and L. Cooley. 2001. Comparative aspects of animal oogenesis. Dev. Biol. 231:291-320.
Minks, A. K., and P. Harrewijn. 1987. Aphids: Their Biology, Natural Enemies and Control. Vols A. Elsevier, Amsterdam pp:450.
Miura, T., C. Braendle, A. Shingleton, G. Sisk, S. Kambhampati, and D. L. Stern. 2003. A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J. Exp. Zoolog. Mol. Dev. Evol. 295:59-81.
Mochizuki, K., C. Nishimiya-Fujisawa, and T. Fujisawa. 2001. Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev. Genes Evol. 211:299-308.
Moran, N. A. 1992. The evolution of aphid life cycles. Annu. Rev. Entomol. 37:321-348.
Nakao, H. 1999. Isolation and characterization of a Bombyx vasa-like gene. Dev. Genes Evol. 209:312-316.
Ohtaka, C., and H. Ishikawa. 1991. Effects of heat treatment on the symbiotic system of an aphid mycetocyte. Symbiosis 11:19-30.
Olsen, L. C., R. Aasland, and A. Fjose. 1997. A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66:95-105.
Orlando, E. 1974. Sex determination in Megoura viciae Buckton (Homoptera, Aphididae). Monit. Zool. Ital. 8:61-70.
Raff, J. W., and D. M. Glover. 1989. Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell 57:611-619.
Raz, E. 2000. The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 1:REVIEWS1017.
Riechmann, V., and A. Ephrussi. 2001. Axis formation during Drosophila oogenesis. Curr. Opin. Genet. Dev. 11:374-383.
Sakaki, T., and H. Ishikawa. 1990. Amino acids and their metabolism in symbiotic and aposymbiotic pea aphids. Proceedings, Aphid Plant Interactions, Populations to Molecules. Oklahoma State University, Stillwater, Oklahoma. pp:288.
Sakata, K., and Y. Ito. 1991. Life history characteristics and behaviour of the bamboo aphid, Pseudoregma bambucicola (Hemiptera: Pemphigidae), having sterile soldiers. Insectes Soc. 38:317-326.
Sakata, K., Y. Ito, J. Yukawa, and S. Yamane. 1991. Ratio of sterile soldiers in the bamboo aphid, Pseudoregma bambucicola (Homoptera: Aphididae), colonies in relation to social and habitat conditions. Appl. entomol. zool 26:463-468.
Sambrook, J., and D. W. Russell. 2001. Molecular Cloning A Laboratory Manual 3rd ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York PP:7.31-37.34, 36.40, A38.14-A38.15.
Shibao, H. 1997. Some wing-padded larvae of Pseudoregma bambucicola (Homoptera: Aphididae: Hormaphidinae) overwinter and develop into virginoparae. Appl. entomol. zool 32:459-464.
Shibao, H. 1999. Reproductive schedule and factors affecting soldier production in the eusocial bamboo aphid Pseudoregma bambucicola (Homoptera, Aphididae). Insectes Soc. 46:378-386.
Shibata, N., Y. Umesono, H. Orii, T. Sakurai, K. Watanabe, and K. Agata. 1999. Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol. 206:73-87.
Shinomiya, A., M. Tanaka, T. Kobayashi, Y. Nagahama, and S. Hamaguchi. 2000. The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev. Growth Differ. 42:317-326.
Smith, J. L., J. E. Wilson, and P. M. Macdonald. 1992. Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell 70:849-859.
St Johnston, D., D. Beuchle, and C. Nusslein-Volhard. 1991. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66:51-63.
Starz-Gaiano, M., and R. Lehmann. 2001. Moving towards the next generation. Mech. Dev. 105:5-18.
Steel, C. G. H., and A. D. Lees. 1977. The role of neurosecretion in the photoperiodic control of polymorphism in the aphid Megoura viciae. J. Exp. Biol. 67:117-135.
Stern, D. L. 1994. A phylogenetic analysis of soldier evolution in the aphid family Hormaphidae. Proc. R. Soc. Lond. 256:203-209.
Stern, D. L., and W. A. Foster. 1996. The evolution of soldier in aphids. Biol. Rev. 7:27-79.
Stern, D. L., J. A. Whitfield, and W. A. Foster. 1997. Behavior and morphology of monomorphic soldiers from the aphid genus Pseudoregma (Cerataphidini, Hormaphididae): implications for the evolution of morphological castes in social aphids. Ins. Soc. 44:379-392.
Stevens, N. M. 1905. A study of the germ cells of aphis rosae and aphis oenotherae. J. Exp. Zool. 2:314-333.
Strome, S., and W. B. Wood. 1982. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 79:1558-1562.
Taber, S. W. 1994. Labile behavioral evolution in a genus of agricultural pests: the Rhopalosiphum plant lice (Hemiptera: Aphididae). Annals of the Entmological Society of America 87 (3):311-320.
Takahashi, R. 1923. Aphididae of Formosa, part 2, Report. Dep. Agric. Gov. Res. Inst. Formosa 4:1-173.
Takahashi, R. 1958. On the aphids of Ceratovacuna in Japan (Aphididae, Homoptera). Kontyu 26:187-190.
Tam, P. P., and S. X. Zhou. 1996. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178:124-132.
Tanaka, S. S., Y. Toyooka, R. Akasu, Y. Katoh-Fukui, Y. Nakahara, R. Suzuki, M. Yokoyama, and T. Noce. 2000. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 14:841-853.
Toyooka, Y., N. Tsunekawa, Y. Takahashi, Y. Matsui, M. Satoh, and T. Noce. 2000. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech. Dev. 93:139-149.
Tsunekawa, N., M. Naito, Y. Sakai, T. Nishida, and T. Noce. 2000. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741-2750.
Webster, P. J., J. Suen, and P. M. Macdonald. 1994. Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster. Development 120:2027-2037.
Will, L. 1889. Entwicklungsgeschichte der viviparen. Aphiden. Zool. Jahrb.
Wylie, C. 1999. Germ cells. Cell 96:165-174.
Yoon, C., K. Kawakami, and N. Hopkins. 1997. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124:3157-3165.
Yoshizaki, G., S. Sakatani, H. Tominaga, and T. Takeuchi. 2000. Cloning and characterization of a vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol. Reprod. Dev. 55:364-371.
Zhou, Y., and M. L. King. 1996. Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122:2947-2953.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top