跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱旭新
研究生(外文):Hsu-Hsin Chu
論文名稱:高相干性高穩定度十兆瓦雷射系統之建造與應用:雷射-原子團交互作用與X光雷射
論文名稱(外文):Construction of a 10-TW Laser of High Coherence and Stability and Its Application in Laser-Cluster Interaction and X-Ray Lasers
指導教授:汪治平汪治平引用關係
指導教授(外文):Jyhpyng Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:207
中文關鍵詞:X光雷射雷射原子團交互作用十兆瓦雷射
外文關鍵詞:10-TW laserlaser-cluster interactionx-ray laser
相關次數:
  • 被引用被引用:1
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近十年來飛秒 (fs) 雷射科技以及雷射啾頻脈衝放大技術 (chirped-pulse amplification technique) 的快速進展,已使尖峰功率高達數十兆瓦到百兆瓦 (10~100 TW) 的雷射脈衝能夠由桌上型的小型雷射系統產生,其聚焦之後的光場強度可以超過10^20 W/cm^2。在這麼強的光場之下,物質與光的交互作用達到過去從未能夠探索的境界。以電子為例,其受到的電磁力約為10^-6 Nt,相當於氫原子中質子吸引電子之庫倫力的100倍,其加速度大於10^23 g (地表重力加速度9.8 m/sec^2),接近黑洞所產生的重力加速度。因此飛秒雷射科技正在開闢物理研究的新領域,並且產生了過去難以想像的應用。例如電漿非線性光學 (plasma nonlinear optics)、高諧頻產生 (high harmonic generation)、桌上型X射線雷射 (table-top x-ray laser)、電漿波式電子加速器 (laser wake-field electron accelerator)、雷射致發核物理 (laser-initiated nuclear physics)、次飛秒光源 (sub-femtosecond light source)、實驗室內天文學 (laboratory astronomy) 以及加速座標與彎曲時空之特性研究。
本論文的第一部份,即在於詳細說明如何建造一套高穩定度並且高時間空間品質的十兆瓦 (10 TW) 鈦藍寶石雷射系統,並且完整檢測其輸出規格。此雷射系統之輸出脈衝能量為 550 mJ,脈衝時寬 50 fs,中心波長 810 nm,頻寬 25 nm。其高時空品質表現如下:時寬-頻寬乘積為傅力葉轉換極限之 1.2 倍,以 F/3.8 與 F/7.7 之偏軸拋物面鏡聚焦,焦點大小分別為 4.3 mm 與 8.5 mm,均為繞射極限之 1.2 倍,同時焦點內之能量分別可達 70% 與 80%,因此光場尖峰強度可達 4 x 10^19 W/cm^2。其高穩定度表現如下:輸出能量擾動只有 1.3%,脈衝時間波形變化與焦點大小變化小於 2.4%,焦點空間位置跳動小於 4 mm。如此品質足以提供作為高強度雷射與物質交互作用之研究。
本論文的第二部份,是將此雷射系統運用於雷射-原子團交互作用之研究中。已知在低溫下氣體分子以 van der Waal’s force 彼此結合所形成的原子團可以有效地吸收高強度雷射脈衝,形成高溫高密度的奈米電漿球,此種奈米電漿球已證實可以輻射出高亮度的X光,放射高能量的帶電粒子 (keV electron, MeV ion),產生高效率的高階諧波,甚至引發核融合。我們的研究首先著重於利用我們所具備的雷射脈衝時間空間控制能力,達成氬氣奈米電漿球X光輻射之最佳化,其雷射光-X光之轉換效率在 11~12 nm 波段可達 12%,Ar7+ 5d-3p 在 13.8 nm 的輻射亮度達 4.1 x 10^25 photons/cm^2/nm/sec/sr,此強度已足以提供作為X光蝕刻術之光源使用。其次我們研究由奈米電漿球集合形成的奈米電漿球氣體之光學性質,利用奈米電漿球在擴散過程中,其 polarizability 會隨密度下降而改變的特性,我們使用一個預雷射脈衝驅動奈米電漿球的擴散,來調整奈米電漿球氣體整體的折射率變化,而達成對於後續主雷射脈衝之傳播的控制。此項研究驗證了奈米電漿球氣體之折射率能夠由 >1 變化至 <1,這種完全不同於均勻電漿的光學性質能夠成為電漿非線性光學全新的研究方向。
本論文的第三部份是利用此超高功率雷射系統做為氙氣X光雷射之激發光源,完成 Pd-like Xe (Xe8+) 5d-5p 在 41.8 nm 的激發輻射放大。X光雷射在結構探測、活體生物顯微術、內層核電子動力學、高密度電漿診斷、X光蝕刻術等等領域上均有極大的用處,然而過去若要產生波長低於 50 nm 的X光雷射,一般需要能量達數十焦耳甚至數百焦耳的巨型雷射系統做為其激發光源,這種體積與經費的限制使X光雷射的應用難以真正落實,我們利用桌上型超高功率雷射系統達成了 Pd-like Xe 41.8 nm 的飽和輸出,所需能量低於 400 mJ,並澄清 plasma uniformality, ionization induced refraction, above-threshold-ionization heating 等機制對於X光雷射輸出之影響,以做為後續發展波長更短、效率更高之X光雷射之基礎。


Following the progress of high-power laser systems advances in the past decade, the exploration of the interaction between strong electromagnetic field and matter has emerged as a new research frontier called “high-field physics”. The maximum intensity produced at the focus of an intense laser pulse can exceeds 10^20 W/cm^2, which is high enough to drive nonlinear motion of free electrons. Therefore, a new field of nonlinear optics, that of relativistic electrons, has been launched, and many applications such as laser-wakefield electron accelerators, soft x-ray lasers, high-order harmonic generation, and laser fusion are developed.
This thesis records my efforts and accomplishments in the research of high-field physics. Chapter 1 reviews the progress of high-power laser systems, including the mechanisms of femtosecond pulse generation and the principles of chirped-pulse amplification. Chapter 2 describes the construction of a versatile 10-TW laser system that I participated. How to achieve high stability and spatiotemporal quality by robust passive controls are presented, and the design principles and methods of characterization and verification are discussed. The basic physics of laser-plasma interaction is introduced in chapter 3, which provides the background knowledge of the following chapters. Chapter 4 presents the studies on the interaction between intense laser pulses and atomic clusters. Two experiments are described. The first is the maximization of soft x-ray emission form laser-irradiated argon clusters. The conversion efficiency in the 11–20 nm wavelength range reached 12%, and a pulse energy of as high as 0.3 mJ was obtained at 13.8-nm emission line. The brightness of this line emission reached 4.1 × 10^25 photons/cm^2/nm/sec/sr, close to that of synchrotron radiation at the same wavelength. This brightness was high enough for many soft x-ray applications such as x-ray microscopy and photolithography. The second is the control
of laser pulse propagation in a cluster gas, which was the first demonstration in the world. Transient refractive index of ionized cluster gas was verified, and the corresponding variations in the microscopic polarizability and macroscopic refractive index were observed. These unique properties may contribute to research on plasma nonlinear optics, such as phase matching of high-order harmonic generation and plasma waveguide formation. Finally,
chapter 5 presents the first demonstration of an optical-field-ionization (OFI) x-ray laser with a laser-irradiated xenon clustered gas jet. Near saturated amplification was achieved. The output energy reached 95 nJ, and the divergence angle of which was 5.2 mrad. In comparison with previous OFI x-ray lasers which use gas-cell targets, the use of gas jet make contamination-free and long-term operation possible.
The original works described in Chapter 2 and 4 are published in Appl.Phys.B 79, 193 (2004), Opt. Comm. 231, 375 (2004), and Phys. Rev.E 69, 035401(R) (2004). The x-ray laser work in Chapter 5 has been submitted to Phys. Rev. Lett. The international system of units (SI) are adopted for all formulas.

Preface vii
1 High Power Laser Systems p.1
2 Building a Versatile 10-TW Laser System p.19
3 Laser-Plasma Interaction p.53
4 Laser-Cluster Interaction p.85
5 Optical-Field-Ionization Soft X-Ray Lasers p.123
6 Conclusion and Perspective p.147
Appendix p.149
Bibliography p.191
Index p.204

[1] D. Strickland and G. Mourou, “Compression of amplified chirped optical
pulses,” Opt. Comm. 56, 219–221 (1985).
[2] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation
of ultrahigh peak power pulses by chirped pulse amplification,”
IEEE J. Quantum Electron. 24, 398–403 (1988).
[3] A. E. Siegman, Lasers (University Science Books, 55D Gate Five Road,
Sausalito, CA 94965, USA, 1986), pp. 362–374.
[4] D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and
C. T. Cotton, “Terawatt Ti:sapphire laser with a spherical reflectiveoptic
pulse expander,” Opt. Lett. 20, 2114–2116 (1995).
[5] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,”
J. Opt. Soc. Am. B 3, 125–133 (1986).
[6] M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modulation in
chirped-pulse amplification,” Opt. Lett. 19, 2149–2151 (1994).
[7] O. A. Konoplev and D. D. Meyerhofer, “Cancellation of -Integral Accumulation
for CPA Lasers,” IEEE J. Sel. Top. Quantum Electron. 4,
459–469 (1998).
[8] K. Yamakawa, P. H. Chiu, A. Magana, and J. D. Kmetec, “Generation
of high peak and average power femtosecond pulses at a 10 Hz
repetition rate in a titanium-doped sapphire laser,” IEEE J. Quantum
Electron. 30, 2698–2706 (1994).
[9] A. M. Weiner, D. E. Leaird, J. S. Patel, and I. J. R. Wullert, “Programmable
shaping of femtosceond optical pulses by use of 128-element
liquid crystal phase modulator,” IEEE J. Quantum Electron. 28, 908–
920 (1992).
[10] M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable
ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049
(1995).
[11] D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond
pulse compression,” Opt. Lett. 22, 1793–1795 (1997).
[12] F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude
and phase control of ultrashort pulses by use of an acousto-optic
programmable dispersive filter: pulse compression and shaping,” Opt.
Lett. 25, 575–577 (2000).
[13] F. Druon, G. Ch´eriaux, J. Faure, J. Nees, M. Nantel, A. Maksimchuk,
G. Mourou, J. C. Chanteloup, and G. Vdovin, “Wave-front correction
of femtosecond terawatt lasers by deformable mirrors,” Opt. Lett. 23,
1043–1045 (1998).
[14] H. Baumhacker, G. Pretzler, K. J. Witte, M. Hegelich, M. Kaluza, S.
Karsch, A. Kudryashov, V. Samarkin, and A. Roukossouev, “Correction
of strong phase and amplitude modulations by two deformable
mirrors in a multistaged Ti:sapphire laser,” Opt. Lett. 27, 1570–1572
(2002).
[15] S. Ito, H. Ishikawa, T. Miura, K. Takasago, A. Endo, and K. Torizuka,
“Seven-terawatt Ti:sapphire laser system operating at 50 Hz with high
beam quality for laser Compton femtosecond X-ray generation,” Appl.
Phys. B 76, 497–503 (2003).
[16] D. M. Pennington et al., “Petawatt laser system and experiments,”
IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000).
[17] M. Pittman, S. Ferr´e, J. P. Rousseau, L. Notebaert, J. P. Chambaret,
and G. Ch´eriaux, “Design and characterization of a near-diffractionlimited
femtosecond 100-TW 10-Hz high-intensity laser system,” Appl.
Phys. Lett. 74, 529–535 (2002).
[18] O. E. Mart´inez, “Design of High-Power Ultrashort Pulse Amplifiers by
Expansion and Recompression,” IEEE J. Quantum Electron. QE-23,
1385–1387 (1987).
[19] M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/
compression of optical pulses for chirped pulse amplification,”
Opt. Comm. 62, 419–421 (1987).
[20] M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and
M. M. Murnane, “Generation of 11-fs pulses from a self-mode-locked
Ti:sapphire laser,” Opt. Lett. 18, 977–979 (1993).
[21] D. J. Kane and R. Trebino, “Single-shot measurement of the intensity
and phase of an arbitrary ultrashort pulse by using frequency-resolved
optical gating,” Opt. Lett. 18, 823–825 (1993).
[22] K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequencyresolved
optical gating with the use of second-harmonic generation,”
J. Opt. Soc. Am. B 11, 2206 (1994).
[23] G. Albrecht, A. Antonetti, and G. Mourou, “Temporal shape analysis
of Nd3+:YAG active passive mode-locked pulses,” Opt. Comm. 40, 59–
62 (1981).
[24] B. E. Lemoff and C. P. J. Barty, “Cubic-phase-free dispersion compensation
in solid-state ultrashort-pulse lasers,” Opt. Lett. 18, 57–59
(1993).
[25] J.-L. Tapi´e and G. Mourou, “Shaping of clean, femtosecond pulses
at 1.053 µm for chirped-pulse amplification,” Opt. Lett. 17, 136–138
(1992).
[26] D. Homoelle, A. L. Gaeta, V. Yanovsky, and G. Mourou, “Pulse contrast
enhancement of high-energy pulses by use of a gas-filled hollow
waveguide,” Opt. Lett. 27, 1646–1648 (2002).
[27] A. Braun, J. V. Rudd, H. Cheng, G. Mourou, D. Kopf, I. D. Jung, K. J.
Weingarten, and U. Keller, “Characterization of short-pulse oscillators
by means of a high-dynamic-range autocorrelation measurement,” Opt.
Lett. 20, 1889–1891 (1995).
[28] P. F. Curley, G. Darpentigny, G. Cheriaux, J. P. Chambaret, and
A. Antonetti, “High dynamic range autocorrelation studies of a femtosecond
Ti:sapphire oscillator and its relevance to the optimisation of
chirped pulse amplification systems,” Opt. Comm. 120, 71–77 (1995).
[29] M. Nantel et al., “Temporal Contrast in Ti:Sapphire Lasers: Characterization
and Control,” IEEE J. Sel. Top. Quantum Electron. 4,
449–458 (1998).
[30] V. V. Ivanov, A. Maksimchuk, and G. Mourou, “Amplified spontaneous
emission in a Ti:sapphire regenerative amplifier,” Appl. Opt. 42, 7231–
7234 (2003).
[31] S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly,
“Tunneling ionization of noble gases in a high-intensity laser field,”
Phys. Rev. Lett. 63, 2212–2215 (1989).
[32] A. Antonetti, F. Blasco, J. P. Chambaret, G. Cheriaux, G. Darpentigny,
C. L. Blanc, P. Rousseau, S. Ranc, G. Rey, and F. Salin,
“A laser system producing 5 × 1019 W/cm2 at 10 Hz,” Appl. Phys. B
65, 197–204 (1997).
[33] J. Itatani, Y. Nabekawa, K. Kondo, and S. Watanabe, “Generation of
13-TW, 26-fs pulses in a Ti:sapphire laser,” Opt. Comm. 134, 134–138
(1997).
[34] K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, D. N. Fittinghoff,
and C. P. J. Barty, “Ultrahigh-Peak and High-Average Power Chirped-
Pulse Amplification of Sub-20-fs Pulses with Ti:Sapphire Amplifiers,”
IEEE J. Sel. Top. Quantum Electron. 4, 385–394 (1998).
[35] H. Wang, S. Backus, Z. Chang, R. Wagner, K. Kim, X. Wang, D.
Umstadter, T. Lei, M. Murnane, and H. Kapteyn, “Generation of 10-
W average-power, 40-TW peak-power, 24-fs pulses from a Ti:sapphire
amplifier system,” J. Opt. Soc. Am. B 16, 1790–1794 (1999).
[36] K. Yamakawa and C. P. J. Barty, “Ultrafast, ultrahigh-peak, and highaverage
power Ti:sapphire laser system and its applications,” IEEE J.
Sel. Top. Quantum Electron. 6, 658–675 (2000).
[37] H.-H. Chu, S.-Y. Huang, L.-S. Yang, T.-Y. Chien, Y.-F. Xiao, J.-Y.
Lin, C.-H. Lee, S. y. Chen, and J. Wang, “A versatile 10-TW laser
system with robust passive controls to achieve high stability and spatiotemporal
quality,” Appl. Phys. B 79, 193–201 (2004).
[38] B. C. Stuart, M. D. Perry, J. Miller, G. Tietbohl, S. Herman, J. A.
Britten, C. Brown, D. Pennington, V. Yanovsky, and K. Wharton,
“125-TW Ti:sapphire/Nd:glass laser system,” Opt. Lett. 22, 242–244
(1997).
[39] J. Bonlie, F. Patterson, D. Price, B. White, and P. Springer, “Production
of > 1021 W/cm2 from a large-aperture Ti:sapphire laser system,”
Appl. Phys. B 70, S155–S160 (2000).
[40] M. P. Kalachnikov, V. Karpov, H. Schonnagel, and W. Sandner, “100-
Terawatt Titanium Sapphire Laser System,” Laser Physics 12, 368
(2002).
[41] Y. Kitagawa et al., “Progress of fast ignitor studies and Petawatt laser
construction at Osaka University,” Phys. Plasmas 9, 2202–2207 (2002).
[42] H. Hora, Laser Plasma Physics (SPIE The International Society for
Optical Engineering, Bellingham, Washington, U.S.A., 2000), p. 9.
[43] T. W. Johnston and J. M. Dawson, “Correct values for high-frequency
power absorption by inverse bremsstrahlung in plasmas,” Phys. Fluids
16, 722 (1973).
[44] A. G. Michette and C. Buckley, X-ray science and technology (Institute
of Physics Publishing, Techno House, Redcliffe Way, Bristol BS1 6NX,
UK, 1993), p. 113.
[45] T. J. M. Boyd and J. J. Sanderson, The physics of plasmas (Cambridge
University Press, The Edinburgh Building, Cambridge CB2 2RU, UK,
2003), p. 10.
[46] W. L. Kruer, The physics of laser plasma interactions (Westview Press;
Reprint edition, 2001), pp. 39, 79, 91.
[47] D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, and R. L. Morse,
“Theory and simulation of resonant absorption in a hot plasma,” Phys.
Rev. A 11, 679–683 (1975).
[48] K. G. Estabrook, E. J. Valeo, and W. L. Kruer, “Two-dimensional relativistic
simulations of resonance absorption,” Phys. Fluids 18, 1151–
1159 (1975).
[49] T. Speziale and P. J. Catto, “Linear wave conversion in an unmagnetized,
collisionless plasma,” Phys. Fluids 20, 990–997 (1977).
[50] P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold ionization
in the long wavelength limit,” Phys. Rev. Lett. 62, 1259–1262
(1989).
[51] N. H. Burnett and P. B. Corkum, “Cold-plasma production for recombination
extreme-ultraviolet lasers by optical-field-induced ionization,”
J. Opt. Soc. Am. B 6, 1195–1199 (1989).
[52] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon,
London, 1978).
[53] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of
atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1965).
[54] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization
of complex atoms and atomic ions in an alternating electromagnetic
field,” Sov. Phys. JETP 64, 1191 (1986).
[55] J. D. Jackson, Classical Electrodynamics (John Wiley and Sons, Inc.,
605 Third Avenue, New York, US, 1999).
[56] A. Rubenchik and S. Witkowski, in Physics of Laser Plasma, M. N.
Rosenbluth and R. Z. Sagdeev, eds., (Elsevier Science, Amsterdam,
Holland, 1991), pp. 408–410.
[57] J. D. Kmetec, C. L. Gordon, III, J. J. Macklin, B. E. Lemoff, G. S.
Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond
laser,” Phys. Rev. Lett. 68, 1527–1530 (1992).
[58] A. P. Fews, P. A. Norreys, F. N. Beg, A. R. Bell, A. E. Dangor, C. N.
Danson, P. Lee, and S. J. Rose, “Plasma ion emission from high intensity
picosecond laser pulse interactions with solid targets,” Phys. Rev.
Lett. 73, 1801–1804 (1994).
[59] E. A. Gibson et al., “Coherent soft x-ray generation in the water window
with quasi-phase matching,” Science 302, 95–98 (2003).
[60] Y. Nagata, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, and K.
Toyoda, “Soft-x-ray amplification of the Lyman-α transition by optical-
field-induced ionization,” Phys. Rev. Lett. 71, 3774–3777 (1993).
[61] B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E.
Harris, “Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV
Laser at 41.8 nm in Xe IX,” Phys. Rev. Lett. 74, 1574–1577 (1995).
[62] T. Ditmire, R. A. Smith, J. W. G. Tisch, and M. H. R. Hutchinson,
“High intensity laser absorption by gases of atomic clusters,” Phys.
Rev. Lett. 78, 3121–3124 (1997).
[63] Y. L. Shao, T. Ditmire, J. W. G. Tisch, E. Springate, J. P. Marangos,
and M. H. R. Hutchinson, “Multi-keV Electron Generation in the Interaction
of Intense Laser Pulses with Xe Clusters,” Phys. Rev. Lett.
77, 3343–3346 (1996).
[64] T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, R. A.
Smith, J. Marangos, and M. H. R. Hutchinson, “High-energy ions produced
in explosions of superheated atomic clusters,” Nature 386, 54–56
(1997).
[65] A. McPherson, B. D. Thompson, A. B. Borisov, K. Boyer, and C. K.
Rhodes, “Multiphoton-induced x-ray emission at 4-5 keV from Xe
atoms with multiple core vacancies,” Nature 370, 631–634 (1994).
[66] S. Dobosz, M. Lezius, M. Schmidt, P. Meynadier, M. Perdrix, D.
Normand, J.-P. Rozet, and D. Vernhet, “Absolute keV photon yields
from ultrashort laser-field-induced hot nanoplasmas,” Phys. Rev. A 56,
R2526–R2529 (1997).
[67] T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and
K. B. Wharton, “Nuclearfusion from explosions of femtosecond laserheated
deuterium clusters,” Nature 398, 489–492 (1999).
[68] O. F. Hagena and W. Obert, “Cluster formation in expanding supersonic
jets: effect of pressure, temperature, nozzle size and test gas,” J.
Chem. Phys. 56, 1793–1802 (1972).
[69] O. F. Hagena, “Cluster ion source,” Rev. Sci. Instrum. 63, 2374–2379
(1992).
[70] J. W¨ormer, V. Guzielski, J. Stapelfeldt, and T. M¨oller, “Fluorescence
excitation spectroscopy of xenon clusters in the VUV,” Chem. Phys.
Lett. 159, 321 (1989).
[71] F. Dorchies, F. Blasco, T. Caillaud, J. Stevefelt, C. Stenz, A. S.
Boldarev, and V. A. Gasilov, “Spatial distribution of cluster size and
density in supersonic jets as targets for intense laser pulses,” Phys.
Rev. A 68, 023201 (2003).
[72] T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, and M. D.
Perry, “Interaction of intense laser pulses with atomic clusters,” Phys.
Rev. A 53, 3379–3402 (1996).
[73] W. Lotz, Z. Phys. 216, 241 (1968).
[74] H. M. Milchberg, S. J. McNaught, and E. Parra1, “Plasma hydrodynamics
of the intense laser-cluster interaction,” Phys. Rev. E 64,
056402 (2001).
[75] V. Kumarappan, M. Krishnamurthy, and D. Mathur, “Asymmetric
High-Energy Ion Emission from Argon Clusters in Intense Laser
Fields,” Phys. Rev. Lett. 87, 085005 (2001).
[76] V. Kumarappan, M. Krishnamurthy, and D. Mathur, “Twodimensional
effects in the hydrodynamic expansion of xenon clusters
under intense laser irradiation,” Phys. Rev. A 66, 033203 (2002).
[77] T. Tajima, Y. Kishimoto, and M. C. Downer, “Optical properties of
cluster plasma,” Phys. Plasmas 6, 3759–3764 (1999).
[78] K. Y. Kim, I. Alexeev, E. Parra, and H. M. Milchberg, “Time-resolved
explosion of intense-laser-heated clusters,” Phys. Rev. Lett. 90, 023401
(2003).
[79] K. Kuroda, T. Kaneko, and S. Itabashi, “Efficient extraction window
for high-throughput x-ray lithography beamlines,” Rev. Sci. Instrum.
22, 2151–2153 (1995).
[80] W. T. Silfvast, M. Klosner, G. M. Shimkaveg, H. Bender, G. D. Kubiak,
and N. R. Fornaciari, “High-power plasma discharge source at 13.5 nm
and 11.4 nm for EUV lithography,” In Proc. SPIE, 3676, 272–275
(1999).
[81] T. Ditmire, T. Donnelly, R. W. Falcone, and M. D. Perry, “Strong
x-ray emission from high-temperature plasmas produced by intense irradiation
of clusters,” Phys. Rev. Lett. 75, 3122–3125 (1995).
[82] T. Ditmire, R. A. Smith, R. S. Marjoribanks, G. Kulcs´ar, and M. H. R.
Hutchinson, “X-ray yields from Xe clusters heated by short pulse high
intensity lasers,” Appl. Phys. Lett. 71, 166–168 (1997).
[83] E. Miura, H. Honda, K.Katsura, E. Takahashi, and K. Kondo, “Soft
x-ray emission from noble gas clusters excited by an ultrashort KrF
laser pulse,” Appl. Phys. B 70, 783–787 (2000).
[84] T. Mocek, C. M. Kim, H. J. Shin, D. G. Lee, Y. H. Cha, K. H. Hong,
and C. H. Nam, “Enhancement of soft x-ray emission from a cryogenically
cooled Ar gas jet irradiated by 25 fs laser pulse,” Appl. Phys.
Lett. 76, 1819–1821 (2000).
[85] E. Parra, I. Alexeev, J. Fan, K. Y. Kim, S. J. McNaught, and H. M.
Milchberg, “X-ray and extreme ultraviolet emission induced by variable
pulse-width irradiation of Ar and Kr clusters and droplets,” Phys. Rev.
E 62, R5931–R5934 (2000).
[86] M. Mori, T. Shiraishi, E. Takahashi, H. Suzuki, L. B. Sharma, E. Miura,
and K. Kondo, “Extreme ultraviolet emission from Xe clusters excited
by high-intensity lasers,” J. Appl. Phys. 90, 3595–3601 (2001).
[87] S. Ter-Avetisyan, M. Schn¨urer, H. Stiel, U. Vogt, W. Radloff, W. Karpov,
W. Sandner, and P. V. Nickles, “Absolute extreme ultraviolet
yield from femtosecond-laser-excited Xe clusters,” Phys. Rev. E 64,
036404 (2001).
[88] J. Zweiback, T. Ditmire, and M. D. Perry, “Femtosecond time-resolved
studies of the dynamics of noble-gas cluster explosions,” Phys. Rev. A
59, R3166–R3169 (1999).
[89] T. Caillaud, F. Blasco, F. Dorchies, Y. Glinec, C. Stenz, and J. Stevefelt,
“Experimental study of K-shell X-ray emission from argon clusters
irradiated by an ultra-intense laser pulse,” Nucl. Instr. Meth. Phys.
Res. B 205, 329–333 (2003).
[90] I. Y. Skobelev et al., “X-ray spectroscopy diagnostic of a plasma produced
by femtosecond laser pulses irradiating a cluster target,” Sov.
Phys. JETP 94, 966–976 (2002).
[91] C. W. Gwyn, R. Stulen, D. Sweeney, and D. Attwood, “Extreme ultraviolet
lithography,” J. Vac. Sci. Technol. B 16, 3142–3149 (1998).
[92] F. Jin and M. Richardson, “New laser plasma source for extremeultraviolet
lithography,” Appl. Opt. 34, 5750–5760 (1995).
[93] S. D¨usterer, H. Schwoerer, W. Ziegler, C. Ziener, and R. Sauerbrey,
“Optimization of EUV radiation yield from laser-produced plasma,”
Appl. Phys. B 73, 693–698 (2001).
[94] R. L. Kelly, J. Phys. Chem. Ref. Data p. 16 (1987).
[95] J. Zweiback, T. Ditmire, and M. D. Perry, “Resonance in scattering
and absorption from large noble gas clusters,” Opt. Express 6, 236–
242 (2000).
[96] M. D. Perry, A. Szoke, O. L. Landen, and E. M. Campbell, “Nonresonant
multiphoton ionization of noble gas: theory and experiment,”
Phys. Rev. Lett. 60, 1270–1273 (1988).
[97] A. L’Huillier, L. A. Lompr´e, G. Mainfray, and C. Manus, “Multiply
charged ions induced by multiphoton absorption processes in rare-gas
atoms at 1.064 µm,” J. Phys. B 6, 1363–1381 (1983).
[98] V. Kumarappan, M. Krishnamurthy, D. Mathur, and L. C. Tribedi,
“Effect of laser polarization on x-ray emission from Arn(n = 200−104)
clusters in intense laser fields,” Phys. Rev. A 63, 023203 (2001).
[99] K. Y. Kim, I. Alexeev, and H. M. Milchberg, “Single-shot supercontinuum
spectral interferometry,” Appl. Phys. Lett. 81, 4124–4126 (2002).
[100] I. Alexeev, T. M. Antonsen, K. Y. Kim, and H. M. Milchberg, “Self-
Focusing of Intense Laser Pulses in a Clustered Gas,” Phys. Rev. Lett.
90, 103402 (2003).
[101] J. W. G. Tisch, “Phase-matched high-order harmonic generation in an
ionized medium using a buffer gas of exploding atomic clusters,” Phys.
Rev. Lett. 62, 041802 (2000).
[102] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187,
493–494 (1960).
[103] D. L. Matthews et al., “Demonstration of a soft x-ray amplifier,” Phys.
Rev. Lett. 54, 110–113 (1985).
[104] S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, and D. Voorhees,
“Amplification of stimulated soft x-ray emission in a confined plasma
column,” Phys. Rev. Lett. 55, 1753–1756 (1985).
[105] C. H. Skinner, “Review of soft x-ray lasers and their applications,”
Phys. Fluids B 3, 2420–2429 (1991).
[106] D. L. Matthews, “Review of x-ray lasers,” Nucl. Instr. Meth. Phys.
Res. B 98, 91–94 (1995).
[107] J. J. Rocca, “Table-top soft x-ray lasers,” Rev. Sci. Instrum. 70, 3799–
3827 (1999).
[108] H. Daido, “Review of soft x-ray laser researches and developments,”
Rep. Prog. Phys. 65, 1513–1576 (2002).
[109] M. A. Dugury and P. M. Rentzepis, “Some approach to vacuum UV
X-ray lasers,” Appl. Phys. Lett. 10, 350–352 (1967).
[110] H. C. Kapteyn, “Photoionization-pumped x-ray lasers using ultrashortpulse
excitation,” Appl. Opt. 31, 4931–4939 (1992).
[111] B. A. Norton and N. J. Peacock, “Population inversion in laserproduced
plasmas by pumping with opacity-broadened lines,” J. Phys.
B 8, 989–996 (1975).
[112] Y. V. Afanas’ev and V. N. Shlyaptsev, “Formation of a population
inversion of transitions in Ne-like ions in steady-state and transient
plasmas,” Sov. J. Quantum Electron. 19, 1606–1612 (1989).
[113] P. V. Nickles, V. N. Shlyaptsev, M. Kalachnikov, M. Schn¨urer, I. Will,
and W. Sandner, “Short pulse x-ray laser at 32.6 nm based on transient
gain in Ne-like titanium,” Phys. Rev. Lett. 78, 2748–2751 (1997).
[114] J. Dunn, A. L. Osterheld, R. Shepherd, W. E. White, V. N. Shlyaptsev,
and R. E. Stewart, “Demonstration of x-ray amplification in transient
gain nickel-like palladium scheme,” Phys. Rev. Lett. 80, 2825–2828
(1998).
[115] M. P. Kalachnikov et al., “Saturated operation of a transient collisional
x-ray laser,” Phys. Rev. A 57, 4778–4783 (1998).
[116] R. E. King et al., “Saturated x-ray lasers at 196 and 73 ˚A pumped
by a picosecond traveling-wave excitation,” Phys. Rev. A 64, 053810
(2001).
[117] P. B. Corkum and N. H. Burnett, In Short-Wavelength Coherent Radiations:
Genearion and Applications, R. W. Falcone and J. Kirz, eds.,2,
225 (OSA, 1988).
[118] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulsedriven,
electron-excited XUV lasers in eight-times-ionized noble gases,”
Opt. Lett. 19, 569–571 (1994).
[119] S. Sebban et al., “Saturated Amplification of a Collisionally Pumped
Optical-Field-Ionization Soft X-Ray Laser at 41.8 nm,” Phys. Rev.
Lett. 86, 3004–3007 (2001).
[120] S. Sebban et al., “Demonstration of a Ni-Like Kr Optical-Field-
Ionization Collisional Soft X-Ray Laser at 32.8 nm,” Phys. Rev. Lett.
89, 253901 (2002).
[121] A. Butler, A. J. Gonsalves, C. M. McKenna, D. J. Spence, S. M.
Hooker, S. Sebban, T. Mocek, I. Bettaibi, and B. Cros, “Demonstration
of a Collisionally Excited Optical-Field-Ionization XUV Laser Driven
in a PlasmaWaveguide,” Phys. Rev. Lett. 91, 205001 (2003).
[122] P. Zeitoun et al., “A high-intensity highly coherent soft X-ray femtosecond
laser seeded by a high harmonic beam,” Nature 431, 426–429
(2004).
[123] B. E. Lemoff, G. Y. Yin, C. L. G. III, C. P. J. Barty, and S. E. Harris,
“Femtosecond-pulse-driven 10-Hz 41.8-nm laser in Xe IX,” J. Opt. Soc.
Am. B 13, 180–184 (1996).
[124] H.-H. Chu, H.-E. Tsai, Y.-F. Xiao, C.-H. Lee, J.-Y. Lin, J. Wang,
and S.-Y. Chen, “Control of laser-beam propagation and absorption in
a nanoplasma gas by programming of a transient complex refractive
index with a prepulse,” Phys. Rev. E 69, 035403 (2004).
[125] W.-T. Chen, T.-Y. Chien, C.-H. Lee, J.-Y. Lin, J. Wang, and S.-Y.
Chen, “Optically Controlled Seeding of Raman Forward Scattering and
Injection of Electrons in a Self-Modulated Laser-Wakefield Accelerator,”
Phys. Rev. Lett. 92, 075003 (2004).
[126] Y.-F. Xiao, H.-H. Chu, H.-E. Tsai, C.-H. Lee, J.-Y. Lin, J. Wang, and
S.-Y. Chen, “Efficient generation of extended plasma waveguides with
the axicon ignitor-heater scheme,” Phys. Plasmas 11, L21–L24 (2004).
[127] S. Hulin, T. Auguste, P. D’Oliveira, P. Monot, S. Jacquemot, L. Bonnet,
and E. Lefebvre, “Soft-x-ray laser scheme in a plasma created by
optical-field-induced ionization of nitrogen,” Phys. Rev. E 61, 5693–
5700 (2000).
[128] P. Lu et al., “Demonstration of a transient-gain nickel-like xenon-ion
x-ray laser,” Opt. Lett. 27, 1911–1913 (2002).
[129] C. G. Durfee III and H. M. Milchberg, “Light pipe of high intensity
laser pulses,” Phys. Rev. Lett. 71, 2049–2052 (1993).
[130] C. G. Durfee III, J. Lynch, and H. M. Milchberg, “Development of a
plasma waveguide for high-intensity laser pulses,” Phys. Rev. E 51,
2368–2389 (1995).
[131] C.-H. Pai, S.-Y. Huang, C.-C. Kuo, M.-W. Lin, C.-H. Lee, J.-Y. Lin,
J. Wang, and S.-Y. Chen, “Fabrication of modulated plasma density
structure for application in quasi-phase-matched high-harmonic generation,”
Physics (Chinese) 27, No. 1, PE–79 (2005).
[132] S. Backus, C. G. Durfee III, M. M. Murnane, and H. C. Kapteyn, “High
power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1223 (1998).
[133] R. I. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion
using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
[134] UV and X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas,
1st ed., E. H. Silver and S. M. Kahn, eds., (Cambridge University Press,
The Edinburgh Building, Cambridge CB2 2RU, UK, 1993), pp. 15–31.
[135] T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled
aberration-corrected concave gratings for a flat-field grazing-incidence
spectrograph,” Appl. Opt. 22, 512 (1983).
[136] N. Nakano, H. Kuroda, T. Kita, and T. Harada, “Development of a
flat-field grazing-incidence XUV spectrometer and its application in
picosecond XUV spectroscopy,” Appl. Opt. 23, 2386 (1984).
[137] D. Neely, D. Chambers, F. Quinn, and M. Roper, “Soft x-ray grating
calibration,” Rutherford Appleton Laboratory Technical Report
(1997).
[138] CRC Handbook of Chemistry and Physics, 74th ed., D. R. Lide, ed.,
(CRC Press, Inc., 2000 Corporate Blvd., N. W. ,Boca Raton, Florida
33431, 1993), pp. 10–205.
[139] R. D. Cowan, The Theory of Atomic Structure and Spectra (University
of California Press, 1981), pp. 12–15.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 林安梧(2002)。談「教育改革」及其相關的「文化土壤」與「心靈機制」問題。教育研究,100,101-107。
2. 周玉秀(1994)。德國小學數學教育(一)。國民教育,34:9,15-19。
3. 周淑卿(1992)。國小課程改革的省思。教育研究雙月刊,28,68-71。
4. 吳清山(2000)。推行「國民教育階段九年一貫課程」學校行政配合之探究。教育研究資訊,7:1,14-21。
5. 吳俊憲(2000)。從「新課程」到「九年一貫課程」-談建構主義下的數學教育。國教輔導,40:1,10-14。
6. 周筱亭(2002)。九年一貫課程數學學習領域的特色。研習資訊,19:1,4-7。
7. 周筱亭(1994)。數學新課程的趨勢。研習資訊,11:3,28-50。
8. 周武昌(2001)。國民中學執行九年一貫課程初探。竹縣文教,24,31-39。
9. 邱玉玲(1998)。教師如何因應九年一貫課程成為新時代的教師。國教輔導,38:2,25-37。
10. 吳柏林(1997)。當前中小學數學教育問題。教育研究,53,8-12。
11. 吳德邦、馬秀蘭(1997)。國小教師對實施新制數學課程之意見調查研究。進修學訊年刊,3,42-49。
12. 林殿傑、張素貞(2002)。因應九年一貫課程銜接問題之探析。國民教育,43:2,20-25。
13. 林殿傑(2000)。探析九年一貫課程之變革。技術及職業教育,55,51-56。
14. 林陳涌(2000)。九年一貫課程發展模式與內容。科學教育月刊,231,35-39。
15. 林素微(2000)。數學科評量的新願景:多元評量。研習資訊,17:3,31-41。