[1-1] J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film”, Appl. Phys. Lett. 73, 2078 (1998).
[1-2] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures”, Jpn. J. Appl. Phys. 39, 982 (2000).
[1-3] D. P. Tsai, and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure”, Appl. Phys. Lett. 77, 1413 (2000).
[1-4] J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons”, Jpn. J. Appl. Phys. 40, 1831 (2001).
[1-5] W. C. Liu , C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure”, Appl. Phys. Lett. 78, 685 (2001).
[1-6] W. C. Liu, and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance”, Phys. Rev. B 65, 155423 (2002).
[1-7] J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966 (2000).
[1-8] X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab”, Phys. Rev. B 68, 113103 (2003).
[1-9] X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens”, Phys. Rev. E 68, 067601 (2003).
[1-10] G. Gomez-Santos, “Universal features of the time evolution of evanescent modes in a left-handed perfect lens”, Phys. Rev. Lett. 90, 077401 (2003).
[1-11] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab”, Appl. Phys. Lett. 82, 1506 (2003).
[1-12] S. A. Ramakrishna, and J. B. Pendry, “The asymmetric lossy near-perfect lens”, J. Modern Opt. 49, 1747 (2002).
[1-13] S. A. Ramakrishna, and J. B. Pendry, “Rening the perfect lens”, Physica B: Conden. Matter 338, 329 (2003).
[1-14] S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction”, Appl. Phys. Lett. 85, 4269 (2004).
[1-15] L. Chen, S. L. He, and L. F. Shen, ” Finite-size effects of a left-handed material Slab on the image quality”, Phys. Rev. Lett. 92, 107404 (2004).
[1-16] J. P. Kottmann, Olivier J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape”, Opt. Express 6, 213 (2000).
[1-17] J. P. Kottmann, and Olivier J. F. Martin, “Plasmon resonances of silver nanowires with a nonregular cross section”, Phys. Rev. B 64, 235402 (2001).
[1-18] W. C. Liu, and D. P. Tsai, “Nonlinear near-field optical eects of the AgOx-type super-resolution near-field structure”, Jpn. J. Appl. Phys. Part 1, 42, 1031 (2003).
[1-19] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes”, Phys. Rev. B 58, 6779 (1998).
[1-20] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures”, Appl. Phys. Lett. 77, 1569 (2000).
[1-21] M. Xiao and N. Rakov, “Enhanced optical near-field transmission through subwavelength holes randomly distributed in a thin gold film”, J. Phys.: Condens. Matter 15, L133 (2003).
[1-22] C. J. Murphy, and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires”, Adv. Mater. 14, 80 (2002).
[1-23] W. L. Barnes, A. Dereux, and T. W. Ebbesen , “Surface plasmon subwavelength optics”, Nature 424, 824 (2003).
[1-24] G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver”, Nano. Lett. 3, 519 (2003).
[1-25] A. D. McFarland, and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano. Lett. 3, 1057 (2003).
[1-26] R. W. Wood, Philos. Mag. 4, 396 (1902).
[1-27] U. Fano, J. Opt. Soc. Am 31,213 (1941).
[1-28] A. Hessel, and A. A. Oliner, “A new theory of Wood''s anomalies on optical gratings”, Appl. Opt. 4, 1275 (1965).
[1-29] M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope”, Phys. Rev. Lett. 68, 476 (1992).
[1-30] T. J. Silva and S. Schultz, and D. Weller, “Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials”, Appl. Phys. Lett. 65, 658 (1994).
[1-31] Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, “Scanning plasmon optical microscope”, Appl. Phys. Lett. 66, 3407 (1995).
[1-32] M. Ashino, and M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998).
[1-33] O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near field optical microscopy”, J. Appl. Phys. 92, 1078 (2002).
[1-34] C. Haynes, and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy”, J. Phys. Chem. B 107, 7426 (2003).
[1-35] D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
[1-36] A.Wokaun, Molec. Phys. 56, 1 (1985).
[1-37] M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules absorbed on metals”, J. Chem. Phys. 69, 4159 (1978).
[1-38] J. C. Tsang, J. R. Kirtley, and T. N. Theis, Sol. State Commun. 35, 667 (1980).
[1-39] R. G. Freeman; K. C. Grabar; K. J. Allison; R. M. Bright; J. A. Davis; A. P. Guthrie; M. B. Hommer; M. A. Jackson; P. C. Smith; D. G. Walter; M. J. Natan, “Self-assembled metal colloid monolayers: An approach to SERS substrates”, Science 267, 1629 (1995).
[1-40] D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture”, Adv. Materials 11, 860 (1999).
[1-41] S. Sun, G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography”, Nano Lett. 4, 1381 (2004).
[1-42] W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Sub-100 nm lithography using ultrashort wavelength of surface plasmons”, J. Vacuum Science & Tech. B 22, 3475 (2004).
[1-43] O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion effeiciency of copper phthalocyanine thin film devices by incorporation of metal clusters”, Solar Energy Materials and Solar Cells 37, 337 (1995).
[1-44] M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, “Metal cluster enhanced organic solar cells”, Solar Energy Materials and Solar Cells 61, 97 (2000).
[1-45] C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators 3, 79 (1982-1983).
[1-46] W. A. Challener, R. R. Ollman, and K. K. Kam, “A surface plasmon resonance gas sensor in a ‘compact disc’ format”, Sens. & Actuators 56, 254 (1999).
[1-47] H. Kano, and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample”, Jpn. J. Appl. Phys. I, 34, 331 (1995).
[1-48] K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement”, Appl. Opt. 27, 1160 (1998).
[1-49] A. A. Lazarides, and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties”, J. Phys. Chem. B 104, 460 (2000).
[1-50] A. J. Haes, and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).
[1-51] A. D. McFarland, and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano Lett. 3, 1057 (2003).
[1-52] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Phys. Rev. Lett. 78, 1667 (1997).
[1-53] S. Nie, and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science 275, 1102 (1997).
[1-54] I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, J. Chem. Phys. 69, 4001 (1978).
[1-55] W. P. Chen, and J. M. Chen, J. Opt. Soc. Am. 71, 189 (1981).
[1-56] H. de Bruijn, R. Kooyman, and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment”, Appl. Opt. 29, 1974 (1990).
[1-57] H. Kano, and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample”, Jpn. J. Appl. Phys. 34, 331 (1995).
[1-58] J. R. Sambles, “More than transparent”, Nature (London) 391, 641 (1998).
[1-59] P. R. Villeneuve, Phys. World 11, 28 (1998)
[2-1] G. R. Fowles, “Introduction to Modern Optics” 2nd edition, 新智, 1977.
[2-2] E. Hecht “Optics” 2nd edition, Addison-Wesley, 1987.
[2-3] N. W. Ashcroft, and N. D. Mermin, “Solid State Physics”, Harcourt, 1976.
[2-4] J. Euler, Z. Physik 137, 318 (1954).
[2-5] A. R. Melnyk, and M. J. Harrison, “Resonant excitation of plasmons in thin films by electromagnetic waves”, Phys. Rev. Lett. 21, 85 (1968).
[2-6] A. R. Melnyk, and M. J. Harrison, Phys. Rev. 2, 835 (1970).
[2-7] R. A. Rerrell, “Predicted radiation of plasma oscillations in metal films”, Phys. Rev. 111, 1214 (1958).
[2-8] K. L. Kliewer, and R. Fuchs, Phys. Rev. 153, 498 (1967).
[2-9] H. Raether, Physics of Thin Film: Advances in Research and Development 9, 152 (1976).
[2-10] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[2-11] J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966 (2000).
[2-12] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction”, Science 292, 77 (2001).
[2-13] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures”, Phys. Rev. Lett. 76, 4773 (1996).
[2-14] S. I. Maslovski, S. A. Tretyakov and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model”, Microwave Opt. Tech. Lett. 35, 47 (2002).
[2-15] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[3-1] M. Born, and E. Wolf, “Principles of Optics” 7th edition, Cambridge, 1999.
[3-2] I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths”, Phys. Rev. B 62, 15299 (2000).
[3-3] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared”, Appl. Opt. 22, 1099 (1983).
[3-4] 邱國斌、蔡定平, “左手材料奈米平板的表面電漿量子簡介”,光學工程季刊 八十三期, 第8頁(2003).[3-5] K. P. Chiu, and D. P. Tsai, “Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material”, Scanning 26 (Suppl. I), 118 (2004).
[3-6] K. P. Chiu, and D. P. Tsai, “Near-field interactions between light and surface plasmons of a metal slab”, Journal of Korean Physical Society, in press (2005).
[3-7] K. P. Chiu, and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of left-handed material”, IEEE Trans. on Magnetics 41, 1016 (2005).