跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱國斌
研究生(外文):Kuo-Pin Chiu
論文名稱:金屬與負折射物質平板之表面電漿研究
論文名稱(外文):Plasmonic effects of metal and negative refraction slab
指導教授:蔡定平
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:99
中文關鍵詞:表面電漿奈米平板負折射物質左手物質近場光學
外文關鍵詞:surface plasmonsnano slabnegative refractionleft-handed materialoptics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們將概略介紹光與物質交互作用之基本電磁理論、平板結構的表面電漿共振理論以及負折射物質之基本性質,並以傳輸矩陣的方法,計算鋁金屬與負折射物質平板系統的ATR光譜以及電場強度的空間分佈。從計算的結果中可以看出,不論是鋁金屬或負折射物質平板系統,當入射光之頻率與波向量符合激發平板系統之表面電漿共振條件時,在金屬或負折射物質中以及其與周圍介電物質介面處之電場強度將有明顯增強的現象,此外,我們也可以看出,配合適當的入射光條件與金屬或負折射物質平板之厚度,將可以使平板系統達到一個最大的表面電漿共振強度。
In this thesis we investigate the surface plasmon resonance properties of a metal (Al) or negative refraction material slab. We use transfer matrix method to calculate the attenuated total reflection (ATR) spectrum and field distribution of the slab material. Calculated results show the field intensity has been enhanced within and at the boundary of the slab material when the frequency and wave vector of incident light correspond to the surface plasmon resonance condition. In conclusion, we found that with proper thickness of slab and light frequency the strength of surface plasmon resonance can be a maximum.
致謝......................................................I
中文摘要.................................................II
英文摘要................................................III
目錄 ....................................................IV
圖目錄 ..................................................VI
表目錄 ..................................................XI

第一章 序論 ………………………………………………………… 1
1-1 前言 …………………………………………………………… 1
1-2 研究動機………………………………………………………… 3
參考資料……………………………………………………………… 6
1-3表面電漿之應用 ………………………………………………… 8
參考資料……………………………………………………………… 10

第二章 基本電磁理論 ……………………………………………… 12
2-1 光與物質交互作用 …………………………………………… 12
(a) 介電物質………………………………………………………… 14
(b) 金屬 …………………………………………………………… 21
(c) 尺寸效應的影響 ……………………………………………… 30
(d) Fresnel 關係式 ……………………………………………… 31
2-2 金屬表面電漿 ………………………………………………… 37
(a) 金屬塊材的電漿模態 ………………………………………… 37
(b) 金屬的表面電漿模態 ………………………………………… 40
(c) 有限厚度平板的表面電漿模態 ……………………………… 47
2-3 負折射物質(左手物質)介紹 ………………………………… 52
參考資料…………………………………………………………… 65

第三章 平板系統的表面電漿探討 ……………………………… 66
3-1 計算與模擬方法 ……………………………………………… 66
3-2 金屬平板系統 ………………………………………………… 71
(a) 對稱結構之金屬平板系統 (玻璃/鋁金屬/玻璃) ……… 71
(b) 非對稱結構之金屬平板系統 (玻璃/鋁金屬/空氣) …… 83
3-3 負折射物質(左手物質)平板系統 …………………………… 87
(a) 對稱結構之負折射物質平板系統 (玻璃/負折射物質/玻璃) …………………………………………………………………… 88
(b) 非對稱結構之負折射物質平板系統 (玻璃/負折射物質/空氣) …………………………………………………………………… 93
參考資料……………………………………………………………… 97

第四章 結論與展望 ………………………………………………… 98
[1-1] J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film”, Appl. Phys. Lett. 73, 2078 (1998).
[1-2] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, “Dynamic aperture of near-field super resolution structures”, Jpn. J. Appl. Phys. 39, 982 (2000).
[1-3] D. P. Tsai, and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure”, Appl. Phys. Lett. 77, 1413 (2000).
[1-4] J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, “Super-resolution near-field structure and signal enhancement by surface plasmons”, Jpn. J. Appl. Phys. 40, 1831 (2001).
[1-5] W. C. Liu , C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure”, Appl. Phys. Lett. 78, 685 (2001).
[1-6] W. C. Liu, and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance”, Phys. Rev. B 65, 155423 (2002).
[1-7] J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966 (2000).
[1-8] X. S. Rao and C. K. Ong, “Amplification of evanescent waves in a lossy left-handed material slab”, Phys. Rev. B 68, 113103 (2003).
[1-9] X. S. Rao and C. K. Ong, “Subwavelength imaging by a left-handed material superlens”, Phys. Rev. E 68, 067601 (2003).
[1-10] G. Gomez-Santos, “Universal features of the time evolution of evanescent modes in a left-handed perfect lens”, Phys. Rev. Lett. 90, 077401 (2003).
[1-11] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab”, Appl. Phys. Lett. 82, 1506 (2003).
[1-12] S. A. Ramakrishna, and J. B. Pendry, “The asymmetric lossy near-perfect lens”, J. Modern Opt. 49, 1747 (2002).
[1-13] S. A. Ramakrishna, and J. B. Pendry, “Rening the perfect lens”, Physica B: Conden. Matter 338, 329 (2003).
[1-14] S. Xiao, M. Qiu, Z. Ruan, and S. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction”, Appl. Phys. Lett. 85, 4269 (2004).
[1-15] L. Chen, S. L. He, and L. F. Shen, ” Finite-size effects of a left-handed material Slab on the image quality”, Phys. Rev. Lett. 92, 107404 (2004).
[1-16] J. P. Kottmann, Olivier J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape”, Opt. Express 6, 213 (2000).
[1-17] J. P. Kottmann, and Olivier J. F. Martin, “Plasmon resonances of silver nanowires with a nonregular cross section”, Phys. Rev. B 64, 235402 (2001).
[1-18] W. C. Liu, and D. P. Tsai, “Nonlinear near-field optical eects of the AgOx-type super-resolution near-field structure”, Jpn. J. Appl. Phys. Part 1, 42, 1031 (2003).
[1-19] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes”, Phys. Rev. B 58, 6779 (1998).
[1-20] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, “Crucial role of metal surface in enhanced transmission through subwavelength apertures”, Appl. Phys. Lett. 77, 1569 (2000).
[1-21] M. Xiao and N. Rakov, “Enhanced optical near-field transmission through subwavelength holes randomly distributed in a thin gold film”, J. Phys.: Condens. Matter 15, L133 (2003).
[1-22] C. J. Murphy, and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires”, Adv. Mater. 14, 80 (2002).
[1-23] W. L. Barnes, A. Dereux, and T. W. Ebbesen , “Surface plasmon subwavelength optics”, Nature 424, 824 (2003).
[1-24] G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver”, Nano. Lett. 3, 519 (2003).
[1-25] A. D. McFarland, and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano. Lett. 3, 1057 (2003).
[1-26] R. W. Wood, Philos. Mag. 4, 396 (1902).
[1-27] U. Fano, J. Opt. Soc. Am 31,213 (1941).
[1-28] A. Hessel, and A. A. Oliner, “A new theory of Wood''s anomalies on optical gratings”, Appl. Opt. 4, 1275 (1965).
[1-29] M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch, “Scanning plasmon near-field microscope”, Phys. Rev. Lett. 68, 476 (1992).
[1-30] T. J. Silva and S. Schultz, and D. Weller, “Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials”, Appl. Phys. Lett. 65, 658 (1994).
[1-31] Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, “Scanning plasmon optical microscope”, Appl. Phys. Lett. 66, 3407 (1995).
[1-32] M. Ashino, and M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998).
[1-33] O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, “Gold elliptical nanoantennas as probes for near field optical microscopy”, J. Appl. Phys. 92, 1078 (2002).
[1-34] C. Haynes, and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy”, J. Phys. Chem. B 107, 7426 (2003).
[1-35] D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977).
[1-36] A.Wokaun, Molec. Phys. 56, 1 (1985).
[1-37] M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules absorbed on metals”, J. Chem. Phys. 69, 4159 (1978).
[1-38] J. C. Tsang, J. R. Kirtley, and T. N. Theis, Sol. State Commun. 35, 667 (1980).
[1-39] R. G. Freeman; K. C. Grabar; K. J. Allison; R. M. Bright; J. A. Davis; A. P. Guthrie; M. B. Hommer; M. A. Jackson; P. C. Smith; D. G. Walter; M. J. Natan, “Self-assembled metal colloid monolayers: An approach to SERS substrates”, Science 267, 1629 (1995).
[1-40] D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: tunable enhanced light transmission through a single sub-wavelength aperture”, Adv. Materials 11, 860 (1999).
[1-41] S. Sun, G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography”, Nano Lett. 4, 1381 (2004).
[1-42] W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Sub-100 nm lithography using ultrashort wavelength of surface plasmons”, J. Vacuum Science & Tech. B 22, 3475 (2004).
[1-43] O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion effeiciency of copper phthalocyanine thin film devices by incorporation of metal clusters”, Solar Energy Materials and Solar Cells 37, 337 (1995).
[1-44] M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, “Metal cluster enhanced organic solar cells”, Solar Energy Materials and Solar Cells 61, 97 (2000).
[1-45] C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators 3, 79 (1982-1983).
[1-46] W. A. Challener, R. R. Ollman, and K. K. Kam, “A surface plasmon resonance gas sensor in a ‘compact disc’ format”, Sens. & Actuators 56, 254 (1999).
[1-47] H. Kano, and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample”, Jpn. J. Appl. Phys. I, 34, 331 (1995).
[1-48] K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement”, Appl. Opt. 27, 1160 (1998).
[1-49] A. A. Lazarides, and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties”, J. Phys. Chem. B 104, 460 (2000).
[1-50] A. J. Haes, and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).
[1-51] A. D. McFarland, and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano Lett. 3, 1057 (2003).
[1-52] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Phys. Rev. Lett. 78, 1667 (1997).
[1-53] S. Nie, and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science 275, 1102 (1997).
[1-54] I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, J. Chem. Phys. 69, 4001 (1978).
[1-55] W. P. Chen, and J. M. Chen, J. Opt. Soc. Am. 71, 189 (1981).
[1-56] H. de Bruijn, R. Kooyman, and J. Greve, “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment”, Appl. Opt. 29, 1974 (1990).
[1-57] H. Kano, and S. Kawata, “Grating-coupled surface plasmon for measuring the refractive index of a liquid sample”, Jpn. J. Appl. Phys. 34, 331 (1995).
[1-58] J. R. Sambles, “More than transparent”, Nature (London) 391, 641 (1998).
[1-59] P. R. Villeneuve, Phys. World 11, 28 (1998)

[2-1] G. R. Fowles, “Introduction to Modern Optics” 2nd edition, 新智, 1977.
[2-2] E. Hecht “Optics” 2nd edition, Addison-Wesley, 1987.
[2-3] N. W. Ashcroft, and N. D. Mermin, “Solid State Physics”, Harcourt, 1976.
[2-4] J. Euler, Z. Physik 137, 318 (1954).
[2-5] A. R. Melnyk, and M. J. Harrison, “Resonant excitation of plasmons in thin films by electromagnetic waves”, Phys. Rev. Lett. 21, 85 (1968).
[2-6] A. R. Melnyk, and M. J. Harrison, Phys. Rev. 2, 835 (1970).
[2-7] R. A. Rerrell, “Predicted radiation of plasma oscillations in metal films”, Phys. Rev. 111, 1214 (1958).
[2-8] K. L. Kliewer, and R. Fuchs, Phys. Rev. 153, 498 (1967).
[2-9] H. Raether, Physics of Thin Film: Advances in Research and Development 9, 152 (1976).
[2-10] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[2-11] J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966 (2000).
[2-12] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction”, Science 292, 77 (2001).
[2-13] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures”, Phys. Rev. Lett. 76, 4773 (1996).
[2-14] S. I. Maslovski, S. A. Tretyakov and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model”, Microwave Opt. Tech. Lett. 35, 47 (2002).
[2-15] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).

[3-1] M. Born, and E. Wolf, “Principles of Optics” 7th edition, Cambridge, 1999.
[3-2] I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths”, Phys. Rev. B 62, 15299 (2000).
[3-3] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared”, Appl. Opt. 22, 1099 (1983).
[3-4] 邱國斌、蔡定平, “左手材料奈米平板的表面電漿量子簡介”,光學工程季刊 八十三期, 第8頁(2003).
[3-5] K. P. Chiu, and D. P. Tsai, “Surface plasmon polariton in visible frequency of a nano-slab consisting of left-handed material”, Scanning 26 (Suppl. I), 118 (2004).
[3-6] K. P. Chiu, and D. P. Tsai, “Near-field interactions between light and surface plasmons of a metal slab”, Journal of Korean Physical Society, in press (2005).
[3-7] K. P. Chiu, and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of left-handed material”, IEEE Trans. on Magnetics 41, 1016 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top