跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:錢正浩
研究生(外文):Cheng-Hao Chien
論文名稱:應用磁鑷子研究細胞對於外力的反應
論文名稱(外文):The Application of Magnetic Tweezer on the Study of Cell Responses to the External Mechanical Force
指導教授:董成淵
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:71
中文關鍵詞:磁鑷子細胞力學細胞爬行
外文關鍵詞:magnetic tweezercell mechanicscell migration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞的運動和生長機制,其重要性不僅在於細胞生物學的領域,更可以應用在組織工程、細胞的培養與分化、癌症的治療等,是一個重要的課題,但是至今仍尚未被完全了解。關於細胞力學(cell mechanics)的研究,有助於了解細胞運動和生長機制,使我們對於細胞乃至於生物系統有更進一步的認識。研究細胞力學的方法之一,就是對細胞施加某種形式的外力,藉由觀察細胞對於外力的反應,來推測細胞內部的種種機制。在本實驗中,我們應用磁鑷子來對NIH/3T3纖維母細胞施加一個單點的外在機械力,利用保溫系統維持細胞的正常情況,然後長時間觀察和分析細胞對於外力的反應及行為,統計其結果並與控制組的結果做比較。我們期望利用實驗中所觀察到的現象,來歸納出外力對於細胞的影響,從中得到其與細胞運動和生長機制的關聯性,使我們對於生物系統有更進一步的了解。
The study of the mechanism of cell motility and cell growth can help us understand more about cell biology. It can also be applied to the research of tissue engineering, cell culture and differentiation, and cancer therapy. The mechanism behind is, however, still not completely understood. We hope, through the investigation of cell mechanics, to learn more about cell biology, and to gain more insight into the mechanism behind. In our experiment, we first set up a temperature-controlled chamber on the microscope, to support long-term observation of living cells. We then used the magnetic tweezer to apply an external mechanical force on NIH/3T3 fibroblast cells. Finally, we characterized and quantified the cell responses. After examining and analyzing the influences of external stress on cells, we tried to find some relationship between external force and cell motility, in order to further our understanding of cell biology.
第一章 簡介 1
1.1細胞學簡介 1
1.1.1細胞 1
1.1.2細胞膜與膜蛋白 1
1.1.3細胞附著(Cell Adhesion) 3
1.1.4細胞骨架與細胞運動(Cytoskeleton and Cell Locomotion) 6
1.2細胞力學(Cell Mechanics) 10
1.2.1細胞力學簡介 10
1.2.2研究細胞力學的技術 12

第二章 實驗架構 18
2.1實驗動機及目的 18
2.2實驗工具及準備工作 19
2.2.1磁鑷子及磁球 19
2.2.2細胞培養及細胞實驗樣品的製備 23
2.2.3實驗裝置及方法 28

第三章 實驗內容及結果 31
3.1磁鑷子施力的校正 31
3.2溫度測試及細胞活性測試 34
3.3控制組實驗一(EXP1):正常情況下細胞的行為 38
3.4控制組實驗二(EXP2):表面黏附磁球的細胞的行為 43
3.5控制組實驗三(EXP3):在磁場下細胞的行為 48
3.6實驗組(EXP4):用磁鑷子透過磁球 對細胞施加外力 觀察其行為反應 54
3.6.1細胞在0.5nN外力下之反應 54
3.6.2細胞在1.0nN以上的外力下之反應 59

第四章 結果討論 64參考資料 70
1.陳嘉芬, 細胞生物學, 藝軒圖書出版社, 第一章, 2002
2.Lodish等原著 李少君等編譯, 分子細胞生物學, 藝軒圖書出版社, 第五、第六、第十九章, 2005
3.Lodish, H. F., Molecular Cell Biology, Freeman, Ch5、Ch6、Ch19, 5th Ed., 2004
4.Alberts, B. et al., Molecular Biology of the Cell, Garland Science, Ch19, 4th Ed., 2002
5.Giancotti, F.G. & Ruoslahti, E. (1999) Integrin Signaling. Science 285, 1028-1032
6.Zhu C, Bao G, Wang N, Cell mechanics: Mechanical response, cell adhesion, and molecular deformation , ANNUAL REVIEW OF BIOMEDICAL ENGINEERING 2: 189-226 2000
7.Dong C, Skalak R, Sung KL, Schmid-Schonbein GW, Chien S. 1988. Passive deformation analysis of human leukocytes. J. Biomech. Eng. 110:27-36
8.Yeung A, Evans E. 1989. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56:139-149
9.Gudi S, Nolan JP, Frangos JA. 1998. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl. Acad. Sci. USA 95:2515-2519
10.Gudi S, Lee AA. Clark CB, Frangos JA. 1998. Equibiaxial strain and strain rate stimulate early activation of G proteins in cardiac fibroblasts. Am. J. Physiol. 274: C1424-28
11.Burridge K, Fath K, Kelly T, Nucholls G, Turner C. 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell. Biol. 4:487-525
12.Maniotis AJ, Chen CS, Ingber DE. 1997. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94:849-54
13.Haydan Huang, Roger D. Kamm, and Richard T. Lee. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol 287: C1-C11, 2004
14.McKnight NL and Frangos JA. Strain rate mechanotransduction in aligned human vascular smooth muscle cells. Ann Biomed Eng 31:239-249, 2003
15.Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519-560, 1995
16.Malek AM and Ixumo S. Control of endothelial cell gene expression by flow. J Biomech 28:1515-1528, 1995
17.Butler PJ, Norwich G, Weinbaum S, and Chien S. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am J Physiol Cell Physiol 280:C962-C969, 2001
18.White CR, Haidekker M, Bao X, and Frangos JA. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103: 2508-2513, 2001
19.Dong C, Skalak R, Sung KL, Schmid-Schonbein GW, Chien S. Passive deformation analysis of human leukocytes. J Biomech Eng 110:27-36, 1988
20.Hochmuth RM. Micropipette aspiration of living cells. J Biomech 33:15-22, 2000
21.Zhelev DV, Needham D, and Hochmuth RM. Role of the membrane cortex in neutrophil deformation in small pipets. Biophys J 67:696-705, 1994
22.Shroff SG, Saner DR, and Lal R. Dynamic micromechanical properties of cultured rat artrial myocytes measured by atomic force microscopy. Am J Physiol Cell Physiol 269:C286-C292, 1995
23.Rotsch C, Jacobson K, and Radmacher M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc Natl Acad Sci USA 96:921-926, 1999
24.Dai J and Sheetz MP. Mechannical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988-996, 1995
25.Sleep J, Wilson D, Simmons R, and Gratzer W. Elasiticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study. Biophys J 77:3085-3095, 1999
26.Huang H, Dong CY, Kwon HS, Sutin JD, Kamm RD, and So PT. Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. Biophys J 82:2211-2223, 2002
27.Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, and Ingber DE. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun 277:93-99, 2000
28.Pommerenke H, Schreiber E, Durr F, Nebe B, Hahnel C, Moller W, and Rychly J. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur J Cell Biol 70:157-164, 1996
29.Bausch AR, Hellerer U, Essler M, Aepfelbacher M, and Sackmann E. Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: a magnetic bead microrheology study. Biophys J 80:2649-2657, 2001
30.Bausch AR, Moller W, and Sackmann E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J 76:573-579, 1999
31.Toyoizumi R, Takeuchi S, The behavior of chick gastrula mesodermal cells under the unidirectional tractive force parallel to the substrata, Journal of cell science 108: 557-567 Part 2, 1995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top