跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃久菖
研究生(外文):Chiu-Chang Huang
論文名稱:奈米碳管薄膜的製造與其電性和光學性質的分析與研究
論文名稱(外文):Electrical and Optical Properties of Carbon Nanotube Thin Film
指導教授:趙治宇
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:44
中文關鍵詞:奈米碳管薄膜製造光電
外文關鍵詞:carbonnanotubefilmelectricaloptical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著奈米科技的進步,許許多多具奈米尺度的材料也如雨後春筍般的興起。奈米碳管是一種具有極大發展潛力的材料。若能發展出碳管的薄膜製程,便可使碳管具有更多的應用價值。
實驗根據 Shimoda 教授所提出的碳管薄膜成長方法,配合著懸浮液可調配不同的濃度特性,來製作出一系列的奈米碳管薄膜;測量這些樣品的透光率,依樣品厚薄程度,透光率從 10 % 左右到 80 % 以上,而薄膜電阻卻是因厚薄程度由 100 多歐姆遽增到 400 多萬。透過二者趨勢線的預測,便可以在透光率與電阻值之間作出最適當的選擇,如此便可以製造出具有預期透明度的導電薄膜,將能應用到更多的領域上。
實驗中亦嘗試著使用 Rinzler 教授的方法來製造可傳送到不同基板表面的自由懸浮碳管薄膜;雖然 Rinzler 教授並未提及以何種溶劑來製造自由懸浮薄膜,但是卻發現了另一種具類似作用的剝離試劑—丙酮,實驗中也發現了能使碳管薄膜從過濾膜上自行剝離的方法,雖然此方法無法對薄膜面積作有效控制,但是卻也提供了在製作自由懸浮碳管薄膜時,一個非常簡單的概念。
With the improvement of nanotechnology, there are many kinds of nano-scale materials developing. Among these materials, carbon nanotubes (CNTs) are quite potential. If CNTs could form a film, they will be more applicable.
By referring to Prof. Shimoda’s film forming method, a series of the CNT films intensity are grown in suspension with different concentration. Their transmittance are wildly distributed over 10 % to 80 %, and the resistance can be distributed over 100 ohm to 4 millions ohm, respectively. By comparing the trend line, a film with required transmittance and resistance could be grown and applied in many application sides.
Another experiment method in this thesis is referring to Prof. Rinzler’s method. Free-standing CNT film can be transferred to another substrate arbitrarily. The solvent, acetone, which could peel film from membrane, is found in this study, and it hasn’t been mentioned in Prof. Rinzler’s paper. On the other hand, a method without solvent is also found. It means that CNT film can be peeled from membrane spontaneously. Though the area of films can’t be controlled in the method, it provides a simple concept for making free-standing CNT film.
致謝 ---------------------------------------------II
摘要 (中文) --------------------------------------III
Abstract -----------------------------------------IV
List of Figures ----------------------------------V
List of Tables -----------------------------------VI

Chapter 1 Introduction 1-8
1-1 An Introduction to Carbon Nanotube ----------1
1-2 Carbon Nanotube Films -----------------------4
1-3 Motivation ----------------------------------7

Chapter 2 Experiment Setup 9-23
2-1 An Introduction to Carbon Nanotube ----------9
> STEP 1. Nanotubes Purification ----------------9
> STEP 2. Processing After Filtration -----------12
> STEP 3. Growing a Nanotube Film ---------------13
STEP 3.1 Separating and Depositing a Nanotube Film 14
STEP 3.2 Fabricating a Free-Standing Nanotube Film 17

Chapter 3 Results and Discussion 24-40
3-1 Measuring the roughness ---------------------24
3-1-1 Result of Sample Growth by Depositing -----24
3-1-2 Result of Sample prepared by peeling off --28
3-2 Resistance Measurements ---------------------30
3-3 Transmittance Measurements ------------------34

Chapter 4 Conclusion ------------------------------41-42

References ---------------------------------------43-44
Ref. 1S. Iijima, Nature 354, P.56 (1991).
Ref. 2奈米科技, 馬遠榮 著;商周出版 (2002).
Ref. 3Li Song et al, Advanced Material 16 (17),P.1529-1534 (2004).
Ref. 4J. D. Harris et al, Materials Science and Engineering B 116, P.369–374 (2005).
Ref. 5Y. Huha, J. Y. Lee, and C. J. Lee, Thin Solid Films 475, P.267–270 (2005).
Ref. 6T. Sun, G. Wang, H. Liu, L. Feng, L. Jiang, and D. Zhu, Journal of the American Chemical Society 125, P.14996-14997 (2003).
Ref. 7Z. P. Huang, D. L. Carnahan, J.Rybczynski, M. Giersig, M. Sennett, D. Z. Wang, J. G. Wen, K. Kempa, and Z. F. Ren, Applied Physics Letters 82 (3), P.460-462 (2003).
Ref. 8O. Albrecht, H. Matsuda, K. Eguchi, and T. Nakagiri Thin Solid Films 284-285, P.152-156 (1996).
Ref. 9D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Nano Letters 3 (9), P.1255-1259 (2003).
Ref. 10X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige, Applied Physics Letters 78 (23), P.3714-3716 (2001).
Ref. 11Michael D. Lynch and David L. Patrick, Nano Letters 2 (11), P.1997-1201 (2002).
Ref. 12L. Huang, X. Cui, G. Dukovic, and S. P O’Brien, Nanotechnology 15, P.1450–1454 (2004).
Ref. 13H. Shimoda, L. Fleminga, K. Hortonb, and O. Zhou, Physica B 323, P.135-136 (2002).
Ref. 14Z. Wu, Z. Chen, X. Du, J. M. Logan, Je. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, P.1273-1276 (2004).
Ref. 15F. Hennrich, S. Lebedkin, S. Malik, J. Tracy, M. Barczewski, H. Rosner, and M. Kappes, Physical Chemistry Chemical Physics (4) 2273-2277 (2002).
Ref. 16H. Shimoda, S. J. Oh, H. Z. Geng, R. J. Walker, X. B. Zhang, L. E. McNeil, and O. Zhou, Advanced Material 14 (12), P.899-901 (2002).
Ref. 17 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R.Lee, D. T. Colbert, and R. E. Smalley, Science 280, P.1253-1256 (1998).
Ref. 18H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, and O. Zhou, Physical Review Letters 88 (1), P.15502 (2002).
Ref. 19B. W. Smith and D. E. Luzzi, Chemical Physics Letters 321, P.169-174 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top