跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/07 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李青澔
研究生(外文):Ching-Hao Li
論文名稱:氯黴素引發細胞老化與癌化機轉之探討
論文名稱(外文):Studies on the Mechanisms of Chloramphenicol Induced Senescence and Carcinogenesis
指導教授:康照洲康照洲引用關係
指導教授(外文):Jaw-Jou Kang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:130
中文關鍵詞:氯黴素老化癌化細胞凋亡轉移
外文關鍵詞:chloramphenicolsenescencecarcinogenesisapoptosisinvasion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來抗生素濫用的問題不只造成醫療資源的浪費,也增加了微生物對第一、二線抗生素的抗藥性,更重要的是,抗生素的濫用不只增加肝臟代謝上的負擔,也會增加致癌的風險,然而目前並沒有直接的證據可以證明抗生素過度和不當的使用會致癌。 許多的抗生素,包括氯黴素和四環黴素等,都是透過抑制原核生物的蛋白質生合成來達到抑菌和制菌的功效,而哺乳類動物的粒線體由於具有類似原核生物的環狀遺傳物質,並且具有自體的蛋白質生合成系統,因此這一類的抗生素在使用上雖然能有效的抑制原核生物的蛋白質生合成,同時也可能影響粒線體的蛋白質生合成。粒線體的遺傳物質孕藏了13個與氧化磷酸化有關的蛋白體,因此,粒線體蛋白質生合成的損害會影響細胞內能量的產生和許多與粒線體有關的生理反應。本篇研究是以氯黴素的處理引發粒線體逆境,進而探討由粒線體逆境所引發的反應。
我們選用HepG2和H1299兩株細胞株給予氯黴素(10~100 μg/ml)的處理,相較於對照組我們發現在氯黴素處理的細胞,(1)由粒線體自行轉譯的蛋白含量明顯的下降,而由細胞核和細胞質內核糖體調控合成的粒線體蛋白質則不受影響,(2)細胞內ATP的含量也隨著氯黴素的處理而降低,(3)細胞的生長潛力也趨緩,細胞的生長週期停滯在G1時期,(4)細胞的形態呈現扁平和不規則的形狀,(5)並且對細胞老化的生物指標SAβ-Gal的活化,這樣的結果顯示,氯黴素所引發的粒線體逆境會增加細胞內鈣離子的濃度並且會導致細胞走向老化。細胞的老化會影響其基因表現的模式,我們發現與細胞老化有關的p21 (調控細胞週期)、Galectin-3 (細胞基質組成)、MMP-3和MMP-13 (胞外基質金屬蛋白酶)、RyR (鈣離子通道) 等基因的表現較對照組明顯的提高。
接著我們嘗試探討由氯黴素所誘導的p21蛋白所引發的生理意義, p21除了抑制細胞週期的進行外也具有抑制細胞凋亡的功能。我們發現氯黴素的處理可以抑制Mitomycin C所引發的caspase 3的活化、PARP的斷裂和細胞的凋亡,而當細胞轉染p21的反義寡核苷酸或siRNA時,則可以同時抑制由氯黴素所造成p21的表現和對細胞凋亡的保護作用,這樣的結果顯示 p21是造成氯黴素拮抗細胞凋亡的重要因子。我們也發現氯黴素會增加p21 mRNA的穩定性和改變p21蛋白在細胞內的分佈。這些結果均顯示,氯黴素所引發的粒線體逆境會透過p21的表現和分佈來抑制caspase 3的活化,進而阻斷致凋亡訊息的傳遞,增加細胞在逆境下的存活率。
我們也嘗試探討氯黴素是否會影響細胞外基質金屬蛋白酶 (MMP) 的表現,我們發現氯黴素會促進MMP-13的表現,同時我們也證明氯黴素會活化MAPKs (ERK, JNK, p38-MAPK) 和PI-3K,其中PI-3K的活性與JNK的活化有密切的關聯,JNK的活化會接著對其受質c-Jun蛋白進行磷酸化的修飾,磷酸化的c-Jun會轉位到細胞核中並活化轉錄因子AP-1並啟動MMP-13的表現。因此,氯黴素誘發MMP-13的表現可以被JNK、PI-3K和AP-1的抑制劑SP600125、LY294002和薑黃素所抑制,MMP-13可以有效的降解細胞外的基質,因此被認為和腫瘤的侵犯和轉移有關,我們發現氯黴素處理後的細胞其侵犯能力明顯增加,而MMP-13的抑制劑CL-82158則可以完全抑制其侵犯能力。因此我們認為氯黴素會藉由誘導MMP-13的表現和分泌,增強癌細胞的侵犯能力。
我們的實驗同時也證明上述的現象不只存在於氯黴素,在其它的抗生素,像doxycycline、minocycline 和clindamycin都有類似的情形。因此,我們提供了確切的證據證明,雖然這些抗生素不具有致突變性,但仍可以透過抑制細胞凋亡和促進侵犯能力等機轉,間接的增加細胞在癌化過程中的潛力,因此我們認為在臨床上此類抗生素的使用必須更加謹慎小心。
The overdose and abuse of antibiotics have been a worldwide problem that it not only caused the antibiotics resistance in microbes but increased the risk in cancer development. However, there is no direct evidence about the relationship between carcinogenesis and antibiotics abuse. Several antibiotics, such as tetracyclines and chloramphenicol, can inhibit both bacterial and mitochondrial protein synthesis. The mitochondria are maternally inherited organelles and possess a circular extra-nuclear genome that encoded 13 polypeptides of mitochondrial oxidative phosphorylayion complexes. Hence, the damage in mitochondrial translation may cause ATP depletion and a series responses. In present study, we used the chloramphenicol to stress on mitochondria and to investigate the chloramphenicol-induced cellular responses.
We found that the chloramphenicol inhibited mitochondria-encoded protein synthesis specifically and decreased the cellular ATP level and the proliferative capacity. The chloramphenicol-treated cells also halted cell cycle at G0/G1 phase, elevated intracellular Ca2+ concentration, changed cell morphology to senescence-like shape and showed the appearance of senescence biomarker SA-β Gal. The chelation of intracellular Ca2+ will blocked the SA-β Gal activation suggested the involvement of Ca2+ in chloramphenicol-mediated senescence biogenesis. Moreover, the senescence-associated genes such as p21, galectin-3, matrix metalloproteinase-3 and -13 and the Ca2+ channel RyR were over-expressed in chloramphenicol-treated cells.
Subsequently, we attempted to investigate the physiological function p21 in chloramphenicol-treated cells. Pretreatment of HepG2 and H1299 cells with chloramphenicol rendered the cells resistant to mitomycin-induced apoptosis. Both mitomycin-induced caspase 3 activity and PARP activation were also inhibited. Both p21 antisense and siRNA could restore apoptotic-associated caspase 3 activity, PARP activation, and the sensitivity to mitomycin-induced apoptosis. Cellular levels of the p21 protein and mRNA were increased through a p53-independent pathway, possibly due to the stabilization of p21 mRNA in chloramphenicol-treated cells. The p21 was redistributed from the perinuclear region to the cytoplasm and co-localized with mitochondrial marker protein. These findings suggested that mitochondrial stress causes resistance to apoptosis through a p21-dependent pathway.
We also found the treatment of chloramphenicol could enhance MMP-3 and MMP-13 expression in JNK, PI-3K/Akt and AP-1 dependent manner. The chloramphenicol-mediated expression of MMP-13 could be inhibited by SP600125, LY294002 and curcumin. The JNK and c-Jun protein were phosphorylated in chloramphenicol-treated cells and the phospho-c-Jun protein will translocate into nucleus then activate MMP-13 promoter through AP-1 consensus site. The MMP-13 has been demonstrated in cancer invasion and metastasis. Chloramphenicol-treated cells showed strong invasive potential than untreated cells and the increase in invasive capacity could be completely prevented by MMP-13 inhibitor CL-82158. These findings suggested that chloramphenicol administration may accelerate cancer cell invasion through a MMP-13 dependent mechanism.
The similar effects also observed in minocycline, doxycycline and clindamycin. Our studies provided strong evidence for the antibiotics abuse in cancer development. The apoptotic resistance and MMP-13 dependent cell invasion may enhance cancer cell survival and accelerate cancer cell invasion, respectively. Finally, the clinical significant of present studies caution the clinical use of these antibiotics should be more carefully, especially during cancer chemotherapy.
Chapter 1 : Background information 1
Chapter 2 : Materials and Methods 20
Chapter 3 : The mitochondrial stress and cellular senescence responses induced by chloramphenicol 34
Chapter 4 : Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21 dependent pathway 55
Chapter 5 : Chloramphenicol induces MMP-13 expression and enhances cell invasion through PI-3K, JNK and AP-1 dependent mechanism 81
Chapter 6 : Conclusion 106
Chapter 7 : References 117
Chapter 8: Appendix 131
Ahmed, S., Rahman, A., Hasnain, A., Goldberg, VM., Haqqi, TM. Phenyl N-tert- butylnitrone down-regulates interleukin-1 beta-stimulated matrix metalloproteinase-13 gene expression in human chondrocytes: suppression of c-Jun NH2-terminal kinase, p38-mitogen-activated protein kinase and activating protein-1. Pharmacol. Exp. Ther. 305: 981-8; 2003.
Ahsen, O., Renken, C., Perkins, G. Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J. Cell. Biol. 150: 1027-1036; 2000.
Amuthan, G., Biswas, G., Ananadatheerthavarada, HK., Vijayasarathy, C., Shephard, HM., Avadhani, NG. Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene. 21: 7839-49; 2002.
Amuthan, G., Biswas, G., Zhang, SY., Klein-Szanto, A., Vijayasarathy, C., Avadhani, NG. Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J. 20: 1910-20; 2001.
Anderson, S., de Bruijn, MH., Coulson, AR., Eperon, IC., Sanger, F., Young, IG. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156: 683-717; 1982.
Anup, R., Moellering, DR., Ceaser, E., Shiva, S., Xu, J., Darley-Usmar, V. Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc. Natl. Acad, Sci. U.S.A. 99: 6643-6648; 2002.
Apati A. Janossy J. Brozik A. Bauer PI. Magocsi M. Calcium induces cell survival and proliferation through the activation of the MAPK pathway in a human hormone-dependent leukemia cell line, TF-1. J. Biol. Chem. 278: 9235-43; 2003
Asada, M., Yamada, T., Ichijo, H., Delia, D., Miyazono, K., Fukumuro, K., Mizutani, S. Apoptosis inhibitory activity of cytoplasmic p21Cip1/WAF1 in monocytic differentiation. EMBO J. 18: 1223-34; 1999.
Bakin, AV., Rinehart, C., Tomlinson, AK., Arteaga, CL. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J. Cell Sci. 115: 3193-206; 2002.
Balbi, HJ. Chloramphenicol: a review. Pediatrics in Review. 25:284-8; 2004.
Spizek, J., Novotna, J., Rezanka, T. Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Adv. Appl. Microbiol. 56:121-54; 2004.
Barchowsky, A., Frleta, D., Vincenti, MP. Integration of the NF-kB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine. 12: 1469-79; 2000.
Bennett, DL., Cheek, TR., Berridge, MJ., De Smedt, H., Parys, JB., Missiaen, L., Bootman, MD. Expression and function of ryanodine receptors in nonexcitable cells. J. Biol. Chem. 271: 6356-62; 1996.
Biswas, G., Anandatheerthavarada, HK., Zaidi, M., Avadhani NG. Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkB/Rel activation through calcineurin-mediated inactivation of IkBbeta. J. Cell Biol. 161: 507-19; 2003.
Biswas, G., Guha, M., Avadhani, NG. Mitochondria-to-nucleus stress signaling in mammalian cells: Nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene. Epub ahead of print; 2005.
Bolanos, JP., Almeida, A., Stewart, V., Peuchen, SL., Clark, JB., Heales, SJ. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68: 2227-40; 1997.
Bossy-Wetzel, E., Green, D.R. Apoptosis: checkpoint at the mitochondrial frontier. Mutat. Res. 434: 243-251; 1999.
Bringold, F., Serrano, M. Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35: 317-29; 2000.
Chakraborti, T., Das, S., Mondal, M. Oxidant, mitochondria and calcium: an overview. Cell. Signal. 11: 77-85; 1999.
Chang, BD., Watanabe, K., Broude, EV., Fang, J., Poole, JC., Kalinichenko, TV., Roninson, IB. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc. Natl. Acad. Sci. U.S.A. 97: 4291-6; 2000.
Chang, L., Karin, M. Mammalian MAP kinase signalling cascades. Nature 410: 37-40; 2001.
Chen, YR., Tan, TH. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene. 17: 173-8; 1998.
Chen, SS., Chang, PJ., Cheng, YW. Lin, YS. Suppression of the STK15 oncogenic activity requires a transactivation-independent p53 function. EMBO J. 21: 4491-4499; 2002.
Chomczynski, P., Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159; 1987.
Close, DR. Matrix metalloproteinase inhibitors in rheumatic diseases. Ann. Rheu. Dis. 60 Suppl 3: 62-7; 2001.
Collado, M., Medema, RH., Garcia-Cao, I., Dubuisson, ML., Barradas, M., Glassford, J., Rivas, C., Burgering, BM., Serrano, M., Lam, EW. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J. Biol. Chem. 275: 21960-8; 2000.
Cowan, DB., Jones, M., Garcia, LM., Noria, S., del Nido, PJ., McGowan, FX. Hypoxia and stretch regulate intercellular communication in vascular smooth muscle cells through reactive oxygen species formation. Arterio. Thrombo. Vasc. Biol. 23: 1754-60; 2003.
Dimri, GP., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, EE., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., Campisi, J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92: 9363-9367; 1995.
Dotto, GP. p21WAF1/Cip1: more than a break to the cell cycle?. Biochim. Biophys. Acta. 1471: M43-56; 2000.
Fahmi, H., Di Battista, JA., Pelletier, JP., Mineau, F., Ranger, P., Martel-Pelletier, J. Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-1βinduced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthrit. Rheu. 44: 595-607; 2001.
Gartel, AL., Tyner, AL. The growth-regulatory role of p21WAF1/CIP1. Prog. Mol. Subcell. Biol. 20: 43-71; 1998.
Gatenby, RA., Gillies, RJ. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4: 891-899; 2004.
Giles, KM., Daly, JM., Beveridge, DJ., Thomson, AM., Voon, DC., Furneaux, HM., Jazayeri, JA., Leedman, PJ. The 3''-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J. Biol. Chem. 278: 2937-46; 2003.
Gille, L., Nohl, H. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation. Arch. Biochem. Biophys.. 388: 34-8; 2001.
Gillespie, FP., Hong, TH., Eisenstadt, JM. Transcription and translation of mitochondrial DNA in interspecific somatic cell hybrids. Mol. Cell. Biol. 6: 1951-7; 1986.
Guo, S., Zhang, Z., Tong, T. Cloning and characterization of cellular senescence-associated genes in human fibroblasts by suppression subtractive hybridization. Exp. Cell Res. 298: 465-472; 2004.
Hajnoczky, G., Csordas, G., Yi, M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium. 32: 363-77; 2002.
Hammett-Stabler, CA., Johns, T. Laboratory guidelines for monitoring of antimicrobial drugs. National Academy of Clinical Biochemistry. Clin. Chem. 44: 1129-40; 1998.
Han, Z., Wei, W., Dunaway, S., Darnowski, JW., Calabresi, P., Sedivy, J., Hendrickson, EA., Balan, KV., Pantazis, P., Wyche, JH. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem. 277: 17154-60; 2002.
Harrison, JW., Svec, TA. The beginning of the end of the antibiotic era ? Part I. The problem: Abuse of the “miracle drugs” Quintessence Int. 29: 151-162 ; 1998.
Hedges, JC., Dechert, MA., Yamboliev, IA., Martin, JL., Hickey, E., Weber, LA., Gerthoffer, WT. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J. Biol. Chem. 274: 24211-9; 1999.
Hirsch, CL., Bonham, K. Histone deacetylase inhibitors regulate p21WAF1 gene expression at the post-transcriptional level in HepG2 cells. FEBS Lett. 570: 37-40; 2004.
Holt, D., Harvey, D., Hurley, R. Chloramphenicol toxicity. Adver. Drug Reac. Toxicol. Rew. 12: 83-95; 1993.
Jackson, JG., Kreisberg, JI., Koterba, AP., Yee, D., Brattain, MG. Phosphorylation and nuclear exclusion of the forkhead transcription factor FKHR after epidermal growth factor treatment in human breast cancer cells. Oncogene. 19: 4574-81; 2000.
Jacobson, MD. Reactive oxygen species and programmed cell death. Trend Biol. Sci. 21: 83-86; 1996.
Jiang, S., Cai, J., Wallace, DC., Jones, DP. Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. Signaling pathway involving release and caspase 3 activation is conserved. J. Biol. Chem. 274: 29905-11; 1999.
Jobin, C., Bradham, CA., Russo, MP., Juma, B., Narula, AS., Brenner, DA., Sartor, RB. Curcumin blocks cytokine-mediated NF-kB activation and proinflammatory gene expression by inhibiting inhibitory factor IkB kinase activity. J. Immunol. 163: 3474-83; 1999.
Johansson, N., Ala-aho, R., Uitto, V., Grenman, R., Fusenig, NE., Lopez-Otin, C., Kahari, VM. Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J. Cell Sci. 113: 227-35; 2000.
Lechuga, CG., Hernandez-Nazara, ZH., Dominguez-Rosales, JA., Morris, ER., Rincon, AR., Rivas-Estilla, AM., Esteban-Gamboa, A., Rojkind, M. TGF-beta1 modulates matrix metalloproteinase-13 expression in hepatic stellate cells by complex mechanisms involving p38MAPK, PI3-kinase, AKT, and p70S6k. Am. J. Physiol. Gastrointest. Liver Physiol. 287: G974-87; 2004.
Li, J., Gao, X., Qian, M., Eaton, JW. Mitochondrial metabolism underlies hyperoxic cell damage. Free Radic.l Biol. Med. 36: 1460-70; 2004.
June, CH., Rabinovitch, PS. Flow cytometric measurement of intracellular ionized calcium in single cells with indo-1 and fluo-3. Methods in Cell Biology. 33: 37-58; 1990.
Kang, MK., Kameta, A., Shin, KH., Baluda, MA., Kim, HR., Park, NH. Senescence-associated genes in normal human oral keratinocytes. Exp. Cell Res. 287: 272-81; 2003.
Karbowski, M., Kurono, C., Wozniak, M., Ostrowski, M., Teranishi, M., Soji, T., Wakabayashi, T. Cycloheximide and 4-OH-TEMPO suppress chloramphenicol-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria. Biochim. Biophys. Acta. 1449: 25-40; 1999.
Karin, M. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270: 16483-6; 1995.
Kasten, MJ. Clindamycin, metronidazole, and chloramphenicol. Mayo Clinic Proceedings. 74: 825-33; 1999.
Knauper, V., Cowell, S., Smith, B., Lopez-Otin, C., O''Shea, M., Morris, H., Zardi, L., Murphy, G. The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem. 272: 7608-16; 1997.
Knauper, V., Lopez-Otin, C., Smith, B., Knight, G., Murphy, G. Biochemical characterization of human collagenase-3. J. Biol. Chem. 271: 1544-50; 1996.
Kroemer, G., Reed, JC. Mitochondrial control of cell death. Nat. Med. 6:513-519; 2000.
Krtolica, A., Campisi, J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int. J. Biochem. Cell. Biol. 34: 1401-14; 2002.
Kuzuya, M., Iguchi, A. Role of matrix metalloproteinases in vascular remodeling. J. Atheros. Thromb. 10: 275-82; 2003.
Lafarge-Frayssinet, C., Robbana-Barnat, S., Frayssinet, C., Toucas, L., Decloitre, F. Cytotoxicity and DNA damaging potency of chloramphenicol and six metabolites: a new evaluation in human lymphocytes and Raji cells. Mutat. Res. 320: 207-15; 1994.
Lambert, AJ., Wang, B., Yardley, J., Edwards, J., Merry, BJ. The effect of aging and caloric restriction on mitochondrial protein density and oxygen consumption. Exp. Gerontol. 39: 289-95; 2004.
Lee, CC., Kang, JJ. Extract of motorcycle exhaust particles induced macrophages apoptosis by calcium-dependent manner. Chem. Res. Toxicol. 15: 1534-42; 2002.
Lee, SJ., Ha, MJ., Lee, J., Nguyen, P., Choi, YH., Pirnia, F., Kang, WK., Wang, XF., Kim, SJ., Trepel, JB. Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway induces p53-independent transcriptional regulation of p21WAF1/CIP1 in human prostate carcinoma cells. J. Biol. Chem. 273: 10618–10623; 1998.
Leeman, MF., Curran, S., Murray, GI. The structure, regulation, and function of human matrix metalloproteinase-13. Crit. Rev. Biochem. Mol. Biol. 37: 149-66; 2000.
Leivonen, SK., Chantry, A., Hakkinen, L., Han, J., Kahari, VM. Smad3 mediates transforming growth factor-beta-induced collagenase-3 (matrix metalloproteinase-13) expression in human gingival fibroblasts. Evidence for cross-talk between Smad3 and p38 signaling pathways. J. Biol. Chem. 277: 46338-46; 2002.
Lenaz, G. Role of mitochondria in oxidative stress and ageing. Biochim. Biophys. Acta. 1366: 53-67; 1998.
Li, de Q., Shang, TY., Kim, HS., Solomon, A., Lokeshwar, BL., Pflugfelder, SC. Regulated expression of collagenases MMP-1, -8, and -13 and stromelysins MMP-3, -10, and -11 by human corneal epithelial cells. Investi. Ophthal. Visual Sci. 44: 2928-36; 2003.
Li, WQ., Dehnade, F., Zafarullah, M. Oncostatin M-induced matrix metalloproteinase and tissue inhibitor of metalloproteinase-3 genes expression in chondrocytes requires Janus kinase/STAT signaling pathway. J. Immunol. 166: 3491-8; 2001.
Linskens, MH., Feng, J., Andrews, WH., Enlow, BE., Saati, SM., Tonkin, LA., Funk, WD., Villeponteau, B. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res. 23: 3244-51; 1995.
Liotta, LA., Tryggvason, K., Garbisa, S., Hart, I., Foltz, CM., Shafie, S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 284: 67-8; 1980.
Liu, J., Shen, X., Nguyen, VA., Kunos, G., Gao, B. Alpha(1) adrenergic agonist induction of p21waf1/cip1 mRNA stability in transfected HepG2 cells correlates with the increased binding of an AU-rich element binding factor. J. Biol. Chem. 275: 11846-51; 2000.
Liu, X., Kim, CN., Yang, J., Jemmerson, R., Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 86: 147-57; 1996.
Loeffler, M., Kroemer, G. The mitochondrion in cell death control: certainties and incognita. Exp. Cell Res. 256: 19-26; 2000.
Lorenzini, A., Tresini, M., Mawal-Dewan, M., Frisoni, L., Zhang, H., Allen, RG., Sell, C., Cristofalo, VJ. Role of the Raf/MEK/ERK and the PI3K/Akt (PKB) pathways in fibroblast senescence. Exp. Gerontol. 37: 1149-56; 2002.
Lutter, M., Fang, M., Luo, X., et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell Biol. 2: 754-756; 2000.
Macip, S., Igarashi, M., Fang, L., Chen, A., Pan, ZQ., Lee, SW., Aaronson, SA. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 21: 2180-8; 2002.
Marchenko, ND., Zaika, A., Moll, UM. Death signal-induced localization of p53 protein to mitochondria. J. Biol. Chem. 275: 16202-16212; 2000.
Mariot, P., Prevarskaya, N., Roudbaraki, MM., Le Bourhis, X., Van Coppenolle, F., Vanoverberghe, K., Skryma, R. Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells. Prostate. 43: 205-14; 2000.
Marshansky, V., Wang, X., Bertrand, R., Proteasome modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J. Immunol. 166: 3130-3142; 2001.
Matsuyama, S., Reed, J.C. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 7: 1155-1165; 2000.
McConnell, BB., Starborg, M., Brookes, S., Peters, G. Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8: 351-4; 1998.
Merry, BJ. Oxidative stress and mitochondrial function with aging - the effects of calorie restriction. Aging Cell. 3: 7-12; 2004.
Miyachi, Y., Yoshioka, A., Imamura, S., Niwa, Y. Effect of antibiotics on the generation of reactive oxygen species. J. Invest. Dermatol. 86: 449-53; 1986.
Mooradian, DL., McCarthy, JB., Komanduri, KV., Furcht, LT. Effects of transforming growth factor-beta 1 on human pulmonary adenocarcinoma cell adhesion, motility, and invasion in vitro. J. Natl. Cancer Inst. 84: 523-7; 1992.
Morais, C., Sandra, S., Russell H., Oliveira, CR. Induction of cytochrome c-mediated apoptosis by amyloid β 25-35 requires functional mitochondria. Brain Res. 931: 117-125; 2002.
Morais, R., Zinkewich-Peotti, K., Parent, M., Wang, H., Babai, F., Zollinger, M. Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer Res. 54: 3889-96; 1994.
Morisaki, H., Ando, A., Nagata, Y., Pereira-Smith, O., Smith, JR., Ikeda, K., Nakanishi, M. Complex mechanisms underlying impaired activation of Cdk4 and Cdk2 in replicative senescence: roles of p16, p21, and cyclin D1. Exp. Cell Res. 253: 503-10; 1999.
Mountian, I., Manolopoulos, VG., De Smedt, H., Parys, JB., Missiaen, L., Wuytack, F. Expression patterns of sarco/endoplasmic reticulum Ca2+-ATPase and inositol 1,4,5-trisphosphate receptor isoforms in vascular endothelial cells. Cell Calcium. 25: 371-80; 1999.
Nabeshima, K., Inoue, T., Shimao, Y., Sameshima, T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int. 52: 255-64; 2002.
Nagase, H., Woessner, JF. Matrix metalloproteinases. J. Biol. Chem. 274: 21491-4; 1999.
Nagata, S. Apoptotic DNA fragmentation. Exp. Cell Res. 256: 12-18; 2000.
Nelson, KK., Melendez, JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 37: 768-84; 2004.
Newmeyer, DD., Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death Cell. 112: 481-90; 2003.
Noda, A., Ning, Y., Venable, SF., Pereira-Smith, OM., Smith, JR. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res. 211: 90-8; 1994.
Nomura, K., Imai, H., Koumura, T. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 351: 183-193; 2000.
Noriko, T., Kelly, M., Lisa, G., Richard, AG., Barbara, A. Osborne Glucocorticoid-induced apoptosis of thymocytes: requirement of proteasome-dependent mitochondrial activity. J. Immunol. 170: 2469 – 2478; 2003.
Ott, M., Robertson, JD., Gogvadze, V. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. U.S.A. 99: 1259-1263; 2002.
Ozanne, BW., McGarry, L., Spence, HJ., Johnston, I., Winnie, J., Meagher, L., Stapleton, G. Transcriptional regulation of cell invasion: AP-1 regulation of a multigenic invasion programme. Eur. J. Cancer. 36: 1640-8; 2000.
Pacher, P., Hajnoczky, G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J. 20: 4107-21; 2001.
Paemen, L., Martens, E., Norga, K., Masure, S., Roets, E., Hoogmartens, J., Opdenakker, G. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem. Pharmacol. 52: 105-11; 1996
Park, JW., Jang, MA., Lee, YH., Passaniti, A., Kwon, TK. p53-independent elevation of p21 expression by PMA results from PKC-mediated mRNA stabilization. Biochem. Biophys. Res. Communi. 280: 244-8;2001.
Park, MJ., Park, IC., Hur, JH., Kim, MS., Lee, HC., Woo, SH., Lee, KH., Rhee, CH., Hong, SI., Lee, SH. Modulation of phorbol ester-induced regulation of matrix metalloproteinases and tissue inhibitors of metalloproteinases by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase. J. Neurosurg. 97: 112-8; 2002.
Parkinson, EK., Munro, J., Steeghs, K., Morrison, V., Ireland, H., Forsyth, N., Fitzsimmons, S., Bryce, S. Replicative senescence as a barrier to human cancer. Biochem. Soc. Transac. 28: 226-33; 2000.
Penta, JS., Johnson, FM., Wachsman, JT., Copeland, WC. Mitochondrial DNA in human malignancy. Mutat. Res. 488: 119-33; 2001.
Pfeuty, A., Gueride, M. Peroxide accumulation without major mitochondrial alteration in replicative senescence. FEBS Lett. 468: 43-7; 2000.
Poluha, W., Poluha, DK., Chang, B., Crosbie, NE., Schonhoff, CM., Kilpatrick, DL., Ross, AH. The cyclin-dependent kinase inhibitor p21WAF1 is required for survival of differentiating neuroblastoma cells. Mol. Cel. Biol. 16: 1335-41; 1996.
Ramachandran, A., Levonen, AL., Brookes, PS., Ceaser, E., Shiva, S., Barone, MC., Darley-Usmar, V. Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic. Biol. Med. 33: 1465-74; 2002.
Ravanti, L., Heino, J., Lopez-Otin, C., Kahari, VM. Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J. Biol. Chem. 274: 2446-55; 1999.
Rego, AC., Oliveira, CR. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 28: 1563-74; 2003.
Riabowol, K., Schiff, J., Gilman, MZ. Transcription factor AP-1 activity is required for initiation of DNA synthesis and is lost during cellular aging. Proc. Natl. Acad. Sci. U. S. A. 89: 157-61; 1992.
Robbana-Barnat, S., Decloitre, F., Frayssinet, C., Seigneurin, JM., Toucas, L., Lafarge-Frayssinet, C. Use of human lymphoblastoid cells to detect the toxic effect of chloramphenicol and metabolites possibly involved in aplastic anemia in man. Drug Chem. Toxicol. 20: 239-53; 1997.
Roninson, IB. Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 179: 1-14; 2002.
Rydziel, S., Durant, D., Canalis, E. Platelet-derived growth factor induces collagenase 3 transcription in osteoblasts through the activator protein 1 complex. J. Cell. Physiol. 184: 326-33; 2000.
Scarabelli, TM., Stephanou, A., Pasini, E., Gitti, G., Townsend, P., Lawrence, K., Chen-Scarabelli, C., Saravolatz, L., Latchman, D., Knight, R., Gardin, J. Minocycline inhibits caspase activation and reactivation, increases the ratio of XIAP to smac/DIABLO, and reduces the mitochondrial leakage of cytochrome c and smac/DIABLO. J. Am. Coll. Cardiol. 43: 865-74; 2004.
Schlame, M., Rua, D., Greenberg, ML. The biosynthesis and functional role of cardiolipin. Prog. Lipid Res. 39:257-88; 2000.
Selvamurugan, N., Chou, WY., Pearman, AT., Pulumati, MR., Partridge, NC. Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. J. Biol. Chem. 273: 10647-57; 1998.
Shidoji, Y., Hayashi, K., Komura, S. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem. Biophys. Res. Communi. 264: 343-347; 1999.
Singh, KK. Mitochondria damage checkpoint in apoptosis and genome stability. FEMS Yeast Res. 5: 127-32; 2004.
Soldner, F., Weller, M., Haid, S., Beinroth, S., Miller, SW., Wullner, U., Davis, RE., Dichgans, J., Klockgether, T., Schulz, JB. MPP+ inhibits proliferation of PC12 cells by a p21WAF1/Cip1-dependent pathway and induces cell death in cells lacking p21 WAF1/Cip1. Exp. Cell Res. 250: 75-85; 1999.
Solis-Herruzo, JA., Rippe, RA., Schrum, LW., de La Torre, P., Garcia, I., Jeffrey, JJ., Munoz-Yague, T., Brenner, DA. Interleukin-6 increases rat metalloproteinase-13 gene expression through stimulation of activator protein 1 transcription factor in cultured fibroblasts. J. Biol. Chem. 274: 30919-26; 1999.
Squier, TC. Oxidative stress and protein aggregation during biological aging Exp. Gerontol. 36: 1539-1550; 2001.
Stein, GH., Beeson, M., Gordon, L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249: 666-9; 1990.
Suh, Y. Cell signaling in aging and apoptosis. Mech. Age. Develop. 123: 881-90; 2002.
Susin, SA., Zamzami, N., Kroemer, G. Mitochondria as regulators of apoptosis: doubt no more. Biochim. Biophys. Acta. 1366: 151-65; 1998.
Suzuki, A., Tsutomi, Y., Yamamoto, N., Shibutani, T., Akahane, K. Mitochondrial regulation of cell death: mitochondria are essential for procaspase 3-p21 complex formation to resist Fas-mediated cell death. Mol. Cell. Biol. 19: 3842-7; 1999.
Sylvester, J., Liacini, A., Li, WQ., Zafarullah, M. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell. Signal. 16: 469-76; 2004.
Takahashi, A., Camacho, P., Lechleiter, JD., Herman, B. Measurement of intracellular calcium. Physiol. Rev. 79: 1089-125; 1999.
Tardif, G., Pelletier, JP., Dupuis, M., Hambor, JE., Martel-Pelletier, J. Cloning, sequencing and characterization of the 5''-flanking region of the human collagenase-3 gene. Biochem. J. 323: 13-6; 1997.
Tresini, M., Lorenzini, A., Frisoni, L., Allen, RG., Cristofalo, VJ. Lack of Elk-1 phosphorylation and dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp. Cell Res. 269: 287-300; 2001.
Varghese, S., Rydziel, S., Canalis, E. Basic fibroblast growth factor stimulates collagenase-3 promoter activity in osteoblasts through an activator protein-1-binding site. Endocrinology. 141: 2185-91; 2000.
Vergani, L., Floreani, M., Russell, A., Ceccon, M., Napoli, E., Cabrelle, A., Valente, L., Bragantini, F., Leger, B., Dabbeni-Sala, F. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines.
Eur. J. Biochem. 271: 3646-56; 2004.
Wakabayashi, T. Megamitochondria formation - physiology and pathology. J. Cell. Mol. Med. 6: 497-538; 2002.
Wang, J., Wei, Q., Wang, CY., Hill, WD., Hess, DC., Dong, Z. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J. Biol. Chem. 279: 19948-54; 2004.
Wang, W., Furneaux, H., Cheng, H., Caldwell, MC., Hutter, D., Liu, Y., Holbrook, N., Gorospe, M. HuR regulates p21 mRNA stabilization by UV light. Mol. Cell. Biol. 20: 760-9; 2000.
Wang, X., Zhu, S., Drozda, M., Zhang, W., Stavrovskaya, IG., Cattaneo, E., Ferrante, RJ., Kristal, BS., Friedlander, RM. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington''s disease. Proc. Natl. Acad. Sci. U. S. A. 100: 10483-7; 2003.
Woodhouse, EC., Chuaqui, RF., Liotta, LA. General mechanisms of metastasis. Cancer. 80: 1529-37; 1997.
Xu, D., Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Communi. 294: 245-8; 2002.
Yagel, S., Warner, AH., Nellans, HN., Lala, PK., Waghorne, C., Denhardt, DT. Suppression by cathepsin L inhibitors of the invasion of amnion membranes by murine cancer cells. Cancer Res. 49: 3553-7; 1989.
Yakes, FM., Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 94: 514-9; 1997.
Yang, RY., Liu, FT. Galectins in cell growth and apoptosis. Cell. Mol. Life Sci. 60: 267-76; 2003.
Yoon, G., Kim, HJ., Yoon, YS., Cho, H., Lim, IK., Lee, JH. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: association of transforming growth factor beta1-mediated p27Kip1 expression. Biochem. J. 366: 613-21; 2002.
Yoon, IK., Kim, HK., Kim, YK., Song, IH., Kim, W., Kim, S., Baek, SH., Kim, JH., Kim, JR. Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology. Exp. Gerontol. 39: 1369-1378; 2004.
Yoon, SO., Park, SJ., Yoon, SY., Yun, CH., Chung, AS. Sustained production of H2O2 activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NFkB pathway. J. Biol. Chem. 277: 30271-82; 2002.
Yoon, SO., Park, SJ., Yun, CH., Chung, AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J. Biochem. Mol. Biol. 36: 128-37; 2003.
Yoon, YS., Byun, HO., Cho, H., Kim, BK., Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 278: 51577-86; 2003.
Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, HR., Raz, A. Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. J. Biol. Chem. 277: 6852-7; 2002.
You, H., Yu, W., Munoz-Medellin, D., Brown, PH., Sanders, BG., Kline, K. Role of extracellular signal-regulated kinase pathway in RRR- -tocopheryl succinate-induced differentiation of human MDA-MB-435 breast cancer cells. Mol. Carcinogenesis 33: 228-236; 2000.
Yu, F., Finley, RL., Raz, A., Kim, HR.Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J. Biol. Chem. 277: 15819-27; 2002.
Zamzami, N., Brenner, C., Marzo, I. Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16: 2265-2282; 1998.
Zaragoza, C., Soria, E., Lopez, E., Browning, D., Balbin, M., Lopez-Otin, C., Lamas, S. Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol. Pharmacol. 62: 927-35; 2002
Zhanel, GG., Homenuik, K., Nichol, K., Noreddin, A., Vercaigne, L., Embil, J., Gin, A., Karlowsky, JA., Hoban, DJ. The glycylcyclines: a comparative review with the tetracyclines. Drugs. 64: 63-88; 2004.
Zhou, BP., Liao, Y., Xia, W., Spohn, B., Lee, MH., Hung, MC. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol. 3: 245-52; 2001.
Zhu, S., Stavrovskaya, IG., Drozda, M., Kim, BY., Ona, V., Li, M., Sarang, S., Liu, AS., Hartley, DM., Wu, du C., Gullans, S., Ferrante, RJ., Przedborski, S., Kristal, BS., Friedlander, RM. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417: 74-8; 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top