(3.238.174.50) 您好!臺灣時間:2021/04/18 02:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張巧佳
研究生(外文):Chiao-Chia Chang
論文名稱:人體肝臟細胞色素P450同功酶參與土震素B和土震素C代謝作用之研究
論文名稱(外文):Role of Human Hepatic Cytochrome P450s in Territrem B and C Metabolism
指導教授:彭福佐
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:125
中文關鍵詞:土震素細胞色素P450人體肝臟微粒體
外文關鍵詞:territremcytochrome P450human liver microsome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
土震素為土麴菌編號23-1 (Aspergillus terreus 23-1) 經米培養,由氯仿萃取分離純化出土震素A、B、C (TRA、TRB、TRC) 三種震顫性黴菌毒素,過去研究指出土震素A可經由成熟雄性大鼠肝臟微粒體代謝生成MA1、MAX以及MA2,而雌性大鼠僅能代謝至MA1;土震素B於兩性大鼠肝臟微粒體中均可被代謝成MB1、MB2、MB3、MB4 (同土震素C),TRC再經由氫氧化作用 (hydroxylation) 產生MC (同MB1),但其代謝物產量則有年齡及性別上的差異性。然後由不同細胞色素P450同功酶之化學、抗體抑制劑以及supersomes確定CYP3A1/2為主要參與TRA、TRB及TRC代謝的P450酵素,其中CYP3A1只參與TRA至MA1的步驟。
土震素為早期在台灣穀倉黴米中篩選出的黴菌Aspergillus terreus 23-1菌株在米培養產生的毒素,目前已知土震素A可經由人肝臟微粒體代謝生成MA1,且證實CYP3A4為主要參與TRA代謝作用的P450酵素。爲了探討在人體肝臟中細胞色素P450同功酶參與TRB與TRC代謝作用之情形,因此本實驗採用人肝臟微粒體及以基因工程轉殖並表現人類細胞色素P450 3A4的中國倉鼠肺臟纖維母細胞 (Chinese hamster lung fibroblast) V79衍生之V79MZh3A4細胞株,作為探討對於土震素B及土震素C代謝研究的生物體外模式。
研究結果顯示:(1)人肝臟對於TRB之代謝作用,可經由4β-C hydroxylation生成MB2及O-demethylation生成MB4,且MB2之產量均大於MB4;對於TRC之代謝作用,則經由4β-C hydroxylation代謝生成MC。人類肝臟對於TRB或是TRC的代謝作用,和人類之性別及年齡均無顯著相關性。(2)藉由化學抑制劑、抗體抑制劑、V79MZh3A4細胞株及以不同細胞色素P450同功酶之cDNA利用baculovirus轉植入insect cell (BTI-TN-5B1-4) 之supersomes的實驗進一步證實CYP3A4/5為主要協助人體對於TRB與TRC進行代謝作用的P450同功酶。(3)在V79MZh3A4細胞株對TRB、TRC和testosterone相互競爭抑制之作用探討中得知,testosterone對TRB代謝生成MB2過程的影響為競爭性抑制作用 (competitive inhibition),testosterone對TRB代謝生成MB4過程的影響為未競爭抑制作用 (uncompetitive inhibition);相對TRB對testosterone代謝生成6β-hydroxytestosterone過程的影響為mixed inhibition。Testosterone與TRC之間則互相為混合型抑制作用 (mixed inhibition)。(4)在探討人肝臟微粒體中CYP3A4/5對於TRB 4β-C hydroxylation及TRB O-demethylation之參與情形的實驗結果得知,由基因重組系統及人肝臟微粒體所求得的CLCYP3A4及CLCYP3A5值,可更加證實了在人肝臟微粒體中,CYP3A4是趨向參與TRB 4β-C hydroxylation生成MB2過程之P450酵素,而CYP3A5是趨向參與TRB O-demethylation生成MB4過程之P450酵素。
Territrem A, B and C, the structure related tremogenic mycotoxins isolated from the chloroform extracts of rice culture of Aspergillus terreus 23-1. The previous study on metabolism of Territrem A (TRA) by liver microsome from Wistar rats showed that three metabolites, MA1, MAX and MA2 were formed in male rats, but only one metabolite, MA1 in female rats. The studies were further carried with specific chemical and antibody inhibitors for CYP isoforms and the sypersomes expressed with specific type of CYP isoforms. The results indicated that CYP3A1, which is dominated in female rat liver, plays a mean role in metabolic pathway from TRA to MA1 and that CYP3A2, which is dominated in male rat liver, plays the mean role in metabolic pathway of TRA to MA1, MAX and MA2.
On the other hand, four metabolites, such as MB1, MB2, MB3 and MB4 (which structure is the same as Territrem C (TRC) ) were formed from Territrem B (TRB) and one metabolite, MC (which structure is the same as MB4) from Territrem C respectively by liver microsome from each of male and female rats.
In order to elucidate the role of human hepatic CYP isoforms in TRB and TRC, the experiments were performed with several enzyme sources such as from different age and sex, V79MZh3A4 cell line derived from Chinese hamster, in which human CYP3A4 were expressed, and several supersomes having enzyme or different tyoe of CYP isoforms.
The following are the resultes obtained: (1) In human liver microsome, MB2, and MB4 were main products from TRB and MC from TRC. There were no age and gender difference in ability to metabolize TRB and TRC. (2) CYP3A4/5 had the major role in metabolism of TRB and TRC. (3) The rate of production of MB2 from TRB or MC from TRC were competitively inhibited by the present of testosterone. However the rate of the production of 6β-hydroxytestosterone from testosterone were inhibited by the present of TRB or TRC in mixed type of inhibition (non competitive and non uncompetitive inhibition). The rate of the production of MB4 from TRB was also inhibited by the present of testosterone in mixed type of inhibition. (4) It suggested that CYP3A4 had the major role in 4β-C hydroxylation of TRB, and CYP3A5 had the major role in O-demethylation of TRB.
圖表目錄 Ⅰ
縮寫表 Ⅴ
中文摘要 Ⅵ
英文摘要 Ⅸ
第一章 绪論 1
第二章 實驗材料與方法 14
第三章 實驗結果 44
第四章 討論 61
第五章 參考文獻 73
附表 83
附圖 91
Aoyama, T., Yamano, S., Guzelian, P. S., Gelboin, H. V., and Gonzalez, F. J. (1990). Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc Natl Acad Sci U S A 87, 4790-4793.
Alexander, W. W., Dene, E. R., Paul, E. T., and Wayne, L. (1983). Regio-and stereoselsctive metabolism of two C19 steroids by five highly purified and reconstituted rat hepatic cytochrome P450 isoenzymes. J. Biol. Chem 258, 8839-8847.
Alvares, A. P., and Mannering, G. J. (1970). Twopsubstrate kinetics of drug-metabolizing enzyme systems of hepatic microsomes. Mol. Pharmacol 6, 206-212.
Bertz, R. J., and Granneman, G. R. (1997). Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32, 210-258.
Chen P. C. (2004). The role of cytochrome P450 3A in the metabolism of Territrem B and C in liver microsomes from 14-week-old Wistar rats. Instisute of Toxicology. National Taiwan University.
Chiou, C. M. (1998). Study on Territrem: Biotransformation of Territrem by rat S9 fraction. Instisute of Toxicology. National Taiwan University.
Christou, M., Mitchell, M. J., Aoyama, T., Gelboin, H. V., Gonzalez, F. J., and Jefcoate, C. R. (1992). Selective suppression of the catalytic activity of cDNA-expressed cytochrome P4502B1 toward polycyclic hydrocarbons in the microsomal membrane: modification of this effect by specific amino acid substitutions. Biochemistry 31, 2835-2841.
Crespi CL (1995). Xenobiotic-metabolizing human cells as tools for pharmacological and toxicological research. Adv Drug Res 26, 180-235.
Combalbert, J., Fabre, I., Fabre, G., Dalet, I., Derancourt, J., Cano, J. P., and Maurel, P. (1989). Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 17, 197-207.
Cotreau, M. M., von Moltke, L. L., and Greenblatt, D. J. (2005). The influence of age and sex on the clearance of cytochrome P450 3A substrates. Clin Pharmacokinet 44, 33-60.
Doehmer, J. (1993). V79 Chinese hamster cells genetically engineered for cytochrome P450 and their use in mutagenicity and metabolism studies. Toxicology 82, 105-118.
Doehmer, J., Seidel, A., Oesch, F., and Glatt, H. R. (1990). Genetically engineered V79 Chinese hamster cells metabolically activate the cytostatic drugs cyclophosphamide and ifosfamide. Environ Health Perspect 88, 63-65.
Estabrook, R. W. (1996). The remarkable P450s: a historical overview of these versatile hemeprotein catalysts. Faseb J 10, 202-204.
Galetin, A., Brown, C., Hallifax, D., Ito, K., and Houston, J. B. (2004). Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos 32, 1411-1420.
Gillam, E. M., Guo, Z., Ueng, Y. F., Yamazaki, H., Cock, I., Reilly, P. E., Hooper, W. D., and Guengerich, F. P. (1995). Expression of cytochrome P450 3A5 in Escherichia coli: effects of 5'' modification, purification, spectral characterization, reconstitution conditions, and catalytic activities. Arch Biochem Biophys 317, 374-384.
Grant, M. H., Burke, M. D., Hawksworth, G. M., Duthie, S. J., Engeset, J., and Petrie, J. C. (1987). Human adult hepatocytes in primary monolayer culture. Maintenance of mixed function oxidase and conjugation pathways of drug metabolism. Biochem Pharmacol 36, 2311-2316.
Guengerich, F. P., and Johnson, W. W. (1999). Kinetics of hydrolysis and reaction of aflatoxin B1 exo-8,9-epoxide and relevance to toxicity and detoxication. Drug Metab Rev 31, 141-158.
Halpert, J. R. (1995). Structural basis of selective cytochrome P450 inhibition. Ann. Rev. Pharmacol. Toxicol 35, 29-53.
Heyn, H., White, R. B., and Stevens, J. C. (1996). Catalytic role of cytochrome P450 2B6 in the N-demethylation of S-mephenytoin. Drug Metab Dispos 24, 948-954.
Hongson, E., Levi P. E., and Guthrie, F. E. (1994). In Introduction to Biochemical Toxicology, Appletion and Lange, Norwalk, CT.
Huang, W., Lin, Y. S., McConn, D. J., 2nd, Calamia, J. C., Totah, R. A., Isoherranen, N., Glodowski, M., and Thummel, K. E. (2004). Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 32, 1434-1445.
Hunt, C. M., Westerkam, W. R., and Stave, G. M. (1992). Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 44, 275-283.
Hustert, E., Haberl, M., Burk, O., Wolbold, R., He, Y. Q., Klein, K., Nuessler, A. C., Neuhaus, P., Klattig, J., Eiselt, R., Koch, I., Zibat, A., Brockmoller, J., Halpert, J. R., Zanger, U. M., and Wojnowski, L. (2001). The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11, 773-779.
Ito K, Iwatsubo T, Kanamitsu S, Nakajima Y, and Sugiyama Y (1998) Quantitative prediction of in vivo drug clearance and drug interactions from in vitro data on metabolism, together with binding and transport. Annu Rev Pharmacol Toxicol 38, 461-499.
Jeng, Y. J. (1997). Study on relationship with sex hormone and metabolism of Territrem B by liver microsome from Wistar rat. Instisute of Toxicology. National Taiwan University.
Jian, W. C. (2003). Gender-and age-related changes in Territrems metabolism by cytochrome P450 3A family in rat liver microsomes. Instisute of Toxicology. National Taiwan University.
Klees, T. M., Sheffels, P., Thummel, K. E., and Kharasch, E. D. (2005). Pharmacogenetic determinants of human liver microsomal alfentanil metabolism and the role of cytochrome P450 3A5. Anesthesiology 102, 550-556.
Kronbach, T. (1991). Bufuraolo, dextromethorphan, and debrisoquine as prototype substrates for human P450 2D6. Methods Enzymol 206, 509-17.
Krusekopf, S., Roots, I., and Kleeberg, U. (2003). Differential drug-induced mRNA expression of human CYP3A4 compared to CYP3A5, CYP3A7 and CYP3A43. Eur J Pharmacol 466, 7-12.
Lin, J. L. (1997). Study on sexual difference of biotransformation of Territrem A by liver microsome from Wistar Rat. Instisute of Toxicology. National Taiwan University.
Lin Wu, S. W., Jean, W. C., Peng, F. C., and Edwards, R. J. (1999). Cytochrome P-4503A1 catalyzes the formation of MA1 from territrem a in liver microsomes of 7-week-old female Wistar rats. J Toxicol Environ Health A 66, 453-467.
Ling, K. H., Chiou, C. M., and Tseng, Y. L. (1991). Biotransformation of territrems by S9 fraction from rat liver. Drug Metab Dispos 19, 587-95.
Ling, K. H. (1988). Territrem: neurotoxicity and biotransformation. J Toxicol Sci 23 Suppl 2, 189-190.
Ling, K. H., Liou, H. H., Yang, C. M., and Yang, C. K. (1984). Isolation, chemical structure, acute toxicity, and some physicochemical properties of territrem C from Aspergillus terreus. Appl Environ Microbiol 47, 98-100.
Ling, K. H., Yang, C. K., Kuo, C. A., and Kuo, M. D. (1982). Solvent systems for improved isolation and separation of territrems A and B. Appl Environ Microbiol 44, 860-863.
Ling, K. H., Yang, C. K., and Peng, F. T. (1979). Territrems, tremorgenic mycotoxins of Aspergillus terreus. Appl Environ Microbiol 37, 355-357.
Nakajima, M., Nakamura, S., Tokudome, S., Shimada, N., Yamazaki, H., and Yokoi, T. (1999). Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 27, 1381-1391.
Nakajima, M., Tane, K., Nakamura, S., Shimada, N., Yamazaki, H., and Yokoi, T. (2002). Evaluation of approach to predict the contribution of multiple cytochrome P450s in drug metabolism using relative activity factor: effects of the differences in expression levels of NADPH-cytochrome P450 reductase and cytochrome b5 in the expression system and the differences in the marker activities. J Pharm Sci 91, 952-963.
Namkung, M. J., Yang, H. L., Hulla, J. E., and Juchau, M. R. (1988). On the substrate specificity of cytochrome P450IIIA1. Mol Pharmacol 34, 628-637.
Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., and et al. (1993). The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12, 1-51.
Omura, T., Sadano, H., Hasegawa, T., Yoshida, Y., and Kominami, S. (1984). Hemoprotein H-450 identified as a form of cytochrome P-450 having an endogenous ligand at the 6th coordination position of the heme. J Biochem (Tokyo) 96, 1491-1500.
Pearce, R., Greenway, D., and Parkinson, A. (1992). Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: Effects on courmarin, dicumarol, and testosterone oxidation. Arch. Biochem. Biophys 298, 211-225.
Peng, F. C., Chen, P. C., Jeng, Y. J., and Edwards, R. J. (2005). Metabolism of territrem B and C in liver microsomes from 14-wk-old Wistar rats is catalyzed by cytochrome P-450 3A. J Toxicol Environ Health A 68, 299-314.
Peng, F. C., Tseng, H. Y., Tsai, J. C., Lin, C., and Doehmer, J. (2003). Role of human hepatic cytochrome P-450s in territrem A metabolism. J Toxicol Environ Health A 66, 1237-1248.
Peng, F. C., and Lin Wu, S. W. (2002). Metabolism of territrem a in liver microsomes from male wistar rats: 3. Cytochrome P450 isoforms catalyzing tra metabolism. J Toxicol Environ Health A 65, 2163-2175.
Peng, F. C., Wu, S. W., and Lin, J. L. (2001a). Metabolism of territrem a in liver microsomes from wistar rats: 2. Sex differences and regulation with gonadal hormones and phenobarbital. J Toxicol Environ Health A 64, 661-671.
Peng, F. C., Wu, S. W., and Wag, B. L. (2001b). Metabolism of territrem a by liver microsomes of Wistar rats: identification of the metabolites and their metabolic sequence. J Toxicol Environ Health A 64, 579-593.
Peter, R., Bocker, R., Beaune, P. H., Iwasaki, M., Guengerich, F. P., and Yang, C. S. (1990). Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P450 2E1. Chem. Res. Toxicol 3, 566-573.
Rauschenbach, R., Gieschen, H., Husemann, M., Salomon, B., and Hildebrand, M. (1995). Stable expression of human cytochrome P450 3A4 in V79 cells and its application for metabolic profiling of ergot derivatives. Eur J Pharmacol 293, 183-190.
Rendic, S., and Di Carlo, F. J. (1997). Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29, 413-580.
Sakuma, T., Endo, Y., Mashino, M., Kuroiwa, M., Ohara, A., Jarukamjorn, K., and Nemoto, N. (2002). Regulation of the expression of two female-predominant CYP3A4 mRNAs (CYP3A41 and CYP3A44) in mouse liver by sex and growth hormones. Arch. Biochem. Biophys 404, 234-242.
Schmalix, W. A., Maser, H., Kiefer, F., Reen, R., Wiebel, F. J., Gonzalez, F., Seidel, A., Glatt, H., Greim, H., and Doehmer, J. (1993). Stable expression of human cytochrome P450 1A1 cDNA in V79 Chinese hamster cells and metabolic activation of benzo[a]pyrene. Eur J Pharmacol 248, 251-261.
Schneider, A., Schmalix, W. A., Siruguri, V., de Groene, E. M., Horbach, G. J., Kleingeist, B., Lang, D., Bocker, R., Belloc, C., Beaune, P., Greim, H., and Doehmer, J. (1996). Stable expression of human cytochrome P450 3A4 in conjunction with human NADPH-cytochrome P450 oxidoreductase in V79 Chinese hamster cells. Arch Biochem Biophys 332, 295-304.
Shimada, T., and Guengerich, F. P. (1989). Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 86, 462-465.
Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., and Guengerich, F. P. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270, 414-423.
Soucek, P., and Gut, I. (1992). Cytochromes P-450 in rats: structures, functions, properties and relevant human forms. Xenobiotica 22, 83-103.
Szklarz, G. D. and Halpert, J. R. (1997). Molecular modeling of cytochrome P450 3A4. J Comput Aided Mol Des 11, 265-272.
Thummel, K. E., Wilkinson, G. R. (1998). In vitroand in vivo drug interactions involving human CYP3A. Annu. Rev. Pharmacol. Toxicol 38, 389-430.
Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Nat. Acad. Sci. USA 76: 4350-4354.
Tsai J. C. (2002). Study on metabolism of Territrem by human cytochrome P450 3A4 expressed in V79 Chinese hamster cells. Instisute of Toxicology. National Taiwan University.
Tseng, Y. L. (1990) Ⅰ. Biotransformation of territrems in rat, Ⅱ. The
stability of territrems. Instisute of Toxicology. National Taiwan University.
Tseng, H. Y. (2000). Study on metabolism of Territrem A by human microsomes and human cytochrome P450 3A4 expressed in V79 Chinese hamster cells. Instisute of Toxicology. National Taiwan University.
Walsky, R. L., and Obach, R. S. (2004). Validated assays for human cytochrome P450 activities. Drug Metab Dispos 32, 647-660.
Wang, B. L. (1995). Biotrnsformation of Territrem A by liver microsome of male rat. Instisute of Toxicology. National Taiwan University.
Wang, H., Dick, R., Yin, H., Licad-Coles, E., Kroetz, D. L., Szklarz, G., Harlow, G., Halpert, J. R., and Correia, M. A. (1998). Structure-function relationships of human liver cytochromes P450 3A: aflatoxin B1 metabolism as a probe. Biochemistry 37, 12536-12545.
Waxman, D. J., Lapenson, D. P., Morrissey, J. J., Park, S. S., Gelboin, H. V., Doehmer, J., and Oesch, F. (1989). Androgen hydroxylation catalysed by a cell line (SD1) that stably expresses rat hepatic cytochrome P-450 PB-4 (IIB1). Biochem J 260, 81-85.
Waxman, D. J., Lapenson, D. P., Aoyama, T., Gelboin, H. V., Gonzalez, F. J., and Korzekwa, K. (1988). Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch Biochem Biophys 290, 160-166.
Wrighton, S. A., and Stevens, J. C. (1992). The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 22, 1-21.
Yamazaki, H., Johnson, W. W., Ueng, Y. F., Shimada, T., and Guengerich, F. P. (1996a). Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5. J Biol Chem 271, 27438-27444.
Yamazaki, H., Nakano, M., Imai, Y., Ueng, Y. F., Guengerich, F. P., and Shimada, T. (1996b). Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Arch Biochem Biophys 325, 174-182.
Yun, C. H., Shimada, T., and Guengerich, F. P. (1992). Roles of human liver cytochrome P4502C and 3A enzymes in the 3-hydroxylation of benzo(a)pyrene. Cancer Res 52, 1868-1874.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔