跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/25 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳文彬
研究生(外文):Wen-Bin Chen
論文名稱:γ-PGA對紅茶色澤及茶乳生成量之影響
論文名稱(外文):Effect of γ-PGA on the color and tea cream formation of black tea
指導教授:吳瑞碧
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:80
中文關鍵詞:紅茶茶乳聚麩胺酸色澤
外文關鍵詞:black teatea creamγ-PGApoly-γ-glutamic acidcolor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:687
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
γ-PGA為納豆菌發酵產物,是一種天然存在、具有強烈陰電性的homo-polyamide,在低添加量下即具有良好的助懸作用,可能有助於阻止茶湯中的多酚類彼此鍵結形成茶乳。本研究主要目的為開發γ-PGA的應用範圍,並提供茶飲料工業一個較為省時省能的加工方式。
經測試過不同鹽類(鈉、鉀)、分子量型態(高、低)以及添加量(0.05~0.25 %)之後,發現鈉鹽高分子型、鈉鹽低分子型、鉀鹽高分子型三種γ-PGA皆可抑制紅茶茶乳生成,並且能夠提高茶湯的紅色度,其中以鈉高分子型抑制茶乳的效果最好,鈉低分子型提升紅色度的效果最好。由於鈉高分子型γ-PGA的黏度過高,對茶湯的口感會有不良影響,因此以鈉低分子型γ-PGA較適合作為茶飲料的添加劑。實驗結果發現在以2%茶葉、100℃去離子水萃取5分鐘的茶湯中添加0.15%的鈉低分子型γ-PGA可將茶乳生成率降低至50%左右,且黏度與市售樣品相近,因此選擇作為儲藏實驗的條件。經4℃儲藏實驗後,證實γ-PGA抑制茶乳生成的效果至少可以維持4週。
為了解γ-PGA抑制茶乳生成的機制,分別以添加CMC與碳酸氫鈉作為對照組來探討黏度與pH值效應的影響。在相同的黏度下,CMC組的茶乳生成量為γ-PGA組的2.8倍。而在相同的pH值下,碳酸氫鈉組的茶乳生成量為γ-PGA組的1.8倍,顯示γ-PGA並非以提高茶湯的黏度或pH值來達到抑制茶乳生成的效果,與市面上常用的茶乳抑制劑不同。
進一步分析茶湯、上清液與茶乳中的成分變化後,發現γ-PGA降低了茶乳中總茶紅質所佔的比例。推測γ-PGA與茶紅質之間可能產生電荷間交互作用(charge-charge interaction),因此抑制了茶乳的生成。氯化鈉電荷干擾實驗證實此一作用的存在。
γ-PGA is a product of natto bacteria fermentation. It is a naturally occurring homo-polyamide with strong electronegativity that might inhibit the cream formation in tea infusion resulted from polyphenol linkages. The aims of this study are to develop new applications for γ-PGA and to offer a more economical way in tea drink manufacture.
Different salt (sodium and potassium) and molecular weight (high and low) forms of γ-PGA and additions (0.05~0.25%) were tested. The results showed that all of the tested three forms of γ-PGA (sodium form high molecular weight, sodium form low molecular weight and potassium form high molecular weight) inhibit the cream formation and enhance the redness of black tea infusion. Among them, sodium form high molecular weight is the best cream inhibitor and sodium form low molecular weight is the best redness enhancer. Due to the high viscosity of sodium form high molecular weight γ-PGA, sodium form low molecular weight γ-PGA is more suitable for tea infusion concerning bad mouth feel. The 0.15% sodium form high molecular weight γ-PGA decreased cream formation to 50% in tea infusion that was made by 2% tea leaf, 100℃ deionic water and 5 minutes extraction to a viscosity close to the commercial products. The optimum condition was thus chosen. In 4℃ storage, the effect of cream inhibition by γ-PGA could last for at least 4 weeks.
To understand the mechanism of cream inhibition of γ-PGA, CMC and NaHCO3 are added to tea infusion to investigate the effects of viscosity and pH value. At the same viscosity, CMC produced 2.8 times cream formation as compared to γ-PGA. At the same pH value, NaHCO3 produced 1.8 times cream formation as compared to γ-PGA. It shows the mechanism for γ-PGA is different from that for common commercial cream inhibitors.
After analyzing the contents of whole tea infusion, supernatant and cream, it was found that γ-PGA decreases the ratio of total thearubigins in cream. Charge-charge interaction may exist between γ-PGA and thearubigins that inhibits the formation of cream. The interaction was proven by sodium chloride interfering test.
摘要…………………………………………………………………………...Ⅰ
Abstract………………………………………………………………………..Ⅱ
目錄…………………………………………………………………………Ⅳ
一、前言………………………………………………………………………1
二、文獻整理…………………………………………………………………2
2.1 紅茶的製造法………………………………………………………..2
2.2 茶葉中的主要成分…………………………………………………..2
2.3 茶乳之組成份………………………………………………………..3
2.4 茶黃質與茶紅質之生理活性………………………………………..9
2.5 茶乳生成之影響因素………………………………………………9
2.6 茶乳之處理方法……………………………………………............14
2.7 γ-PGA之生產……………………………………………………….18
2.8 γ-PGA之相關應用………………………………………………….22
三、材料與方法……………………………………………………………….26
3.1 原料…………………………………………………………............26
3.2 藥品…………………………………………………………............26
3.3 實驗設備……………………………………………………............26
3.4 實驗架構……………………………………………………............27
3.5 實驗方法……....................................................................................28
四、結果與討論……………………………………………………………….32
4.1 γ-PGA對茶乳生成率的影響……………………………………….32
4.2 γ-PGA對茶湯吸收光譜與透光率的影響………………………….34
4.3 γ-PGA對茶湯色澤的影響………………………………………….39
4.4 γ-PGA對茶湯酸鹼值的影響……………………………………….43
4.5 γ-PGA對茶湯黏度的影響………………………………………….45
4.6 儲藏實驗……………………………………………………............49
4.7 γ-PGA抑制茶乳生成的可能機制………………………………….53
五、結論……………………………………………………………………….63
六、參考文獻………………………………………………………………….64

圖次
圖一、茶黃質形成之反應……………………………………………………...6
圖二、茶紅質的可能結構……………………………………………………...7
圖三、紅茶茶湯茶乳生成溫度與茶湯濃度之關係………………………….11
圖四、pH值對茶乳生成的影響………………………………………………12
圖五、γ-PGA的結構…………………………………………………………..19
圖六、Bacillus subtilis IFO 3335的γ-PGA生合成途徑……………………...21
圖七、γ-PGA添加量對2%胺基酸溶液的苦味抑制效果……………………24
圖八、添加1%γ-PGA對2%胺基酸、2%維生素、2%乳酸鈣以及0.1%咖啡因溶液的苦味抑制效果………………………………………………...25
圖九、茶黃質與茶紅質定量………………………………………………….31
圖十、γ-PGA添加量對茶乳生成率的影響…………………………………..33
圖十一、添加鈉高分子型γ-PGA的紅茶茶湯吸收光譜…………………….35
圖十二、添加鈉低分子型γ-PGA的紅茶茶湯吸收光譜…………………….36
圖十三、添加鉀型γ-PGA的紅茶茶湯吸收光譜…………………………….37
圖十四、鈉高分子型γ-PGA對紅茶茶湯黏度的影響……………………….46
圖十五、鈉低分子型γ-PGA對紅茶茶湯黏度的影響……………………….47
圖十六、鉀型γ-PGA對紅茶茶湯黏度的影響……………………………….48
圖十七、茶湯儲藏在55℃下之吸收光譜…………………………………….51
圖十八、茶湯儲藏在4℃下之茶乳生成量…………………………………...52
圖十九、茶湯、上清液與茶乳之總茶紅質含量……………………………...57
圖二十、茶湯、上清液與茶乳之總茶黃質含量……………………………...58
圖二十一、茶湯、上清液與茶乳之咖啡因含量……………………………...59
圖二十二、茶湯、上清液與茶乳之TRSⅠ含量……………………………...60
圖二十三、茶湯、上清液與茶乳之TRSⅡ含量……………………………...61
圖二十四、氯化鈉添加量對茶乳生成量的影響……………………………62
附錄一、市售樣品的吸收光譜……………………………………………….72
附錄二、市售樣品的透光度………………………………………………….73
附錄三、市售樣品的Hunter’s L、a、b值……………………………………74
附錄四、市售樣品的酸鹼值………………………………………………….75
附錄五、市售樣品的黏度…………………………………………………….76
附錄六、咖啡因標準品之HPLC分析圖譜與檢量線………………………..77
附錄七、茶湯樣品之HPLC分析圖譜………………………………………78
附錄八、上清液樣品之HPLC分析圖譜……………………………………..79
附錄七、茶乳樣品之HPLC分析圖譜………………………………………..80

表次
表一、紅茶與綠茶茶湯中不同部分之化學組成……………………………5
表二、包種茶茶湯中不同部分之化學組成…………………………………8
表三、萃取溫度對茶乳的影響………………………………………………13
表四、紅茶茶湯經超過濾後之色澤與多酚類濃度變化……………………16
表五、茶乳生成抑制劑之篩選………………………………………………17
表六、γ-PGA生產菌株………………………………………………………20
表七、γ-PGA及其衍生物之可能應用………………………………………23
表八、各型γ-PGA對紅茶茶湯透光率的影響………………………………38
表九、各型γ-PGA對紅茶茶湯Hunter’s L值的影響………………………40
表十、各型γ-PGA對紅茶茶湯Hunter’s a值的影響………………………41
表十一、各型γ-PGA對紅茶茶湯Hunter’s b值的影響……………………42
表十二、各型γ-PGA對紅茶茶湯pH值的影響……………………………44
表十三、茶湯儲藏在55℃下之各項物化性質變化…………………………50
表十四、茶湯添加CMC與鈉高分子型γ-PGA之茶乳生成量比較………55
表十五、茶湯添加碳酸氫鈉與鈉低分子型γ-PGA之茶乳生成量比較……56
甘子能。1981。茶中的多元酚類成分。食品工業。13:10-18。
阮逸明、蔡永生、張如華、林金池、楊盛勳。1995。茶葉多元化產品之研製與推廣。農特產品加工研討會專刊。61-72。
沈賜川。2004。以葡萄糖-甘胺酸模式探討乙醇溶液之梅納反應。國立台灣大學食品科技研究所博士論文。
林志傑。1995。紅茶除口臭物質之萃取與區分。國立台灣大學食品科技研究所碩士論文。
洪陶玉。2000。紅茶除口臭成分及其作用機制之研究。國立台灣大學食品科技研究所博士論文。
黃正宗。2004。製程處理對不同品種茶樹製造紅茶化學成分與茶湯品質之影響。國立台灣大學森林學研究所碩士論文。
彭遐齡。1952。紅茶製造學。台灣省政府農林廳茶業傳習所出版。台北。台灣。
趙育漳。1994。包種茶湯之茶乳形成及其對膜濃縮加工之影響。國立台灣大學食品科技研究所博士論文。
鄭正宏。1995。飲料茶澄清技術之研究。農特產品加工研討會專刊。92-99。
Agbo F, Spradlin JE. 1996. Enzymatic clarification of tea extracts. United States patent US5445836.
Apostolides Z, Balentine DA, Harbowy ME, Hara Y, Weisburger JH. 1997. Inhibition of PhIP mutagenicity by catechins, and by theaflavins and gallate esters. Mutation Res 389:167-172.
Beck J, Ledl F, Sengl M, Severin T. 1990. Formation of acids, lactones and esters through the Maillard reaction. Zeitschrift fuer Lebensmittel Untersuchung und Forschung 190:212-216.
Boadi DK, Neufeld RJ. 2001. Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb Technol 28:590-595.
Bonnely S, Davis AL, Lewis JR, Astill C. 2003. A model oxidation system to study oxidized phenolic compounds present in black tea. Food Chem 83:485-492.
Chao YC, Chiang BH. 1999. Cream formation in a semifermented tea. J Sci Food Agric 79:1767-1774.
Chaudhuri L, Basu S, Seth P, Chaudhuri T, Besra SE, Vedasiromoni JR, Ganguly DK. 2000. Prokinetic effect of black tea on gastrointestinal motility. Life Sci 66:847-854.
Chen YC, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. 1999. Inhibition of TPA-induced protein kinase C and transcription activator protein-1 binding activities by theaflavin-3,3’-digallate from black tea in NIH3T3 cells. J Agric Food Chem 47:1416-1421.
Clark KJ, Grant PG, Sarr AB, Belakere JR, Swaggerty CL, Phillips TD, Woode GN. 1998. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections. Vet Microbiol 63:147-157.
Dhawan A, Anderson D, Pascual-Teresa S, Santos-Buelga C, Clifford MN, Ioannides C. 2002. Evaluation of the antigenotoxic potential of monomeric and dimeric flavanols, and black tea polyphenols against heterocyclic amine-induced DNA damage in human lymphocytes using the Comet assay. Mutation Res 515:39-56.
Fujii H. 1963. On the formation of mucilage by Bacillus natto. Part Ⅲ. Chemical constitutions of mucilage in natto (1). Nippon Nogeikagaku Kaishi 37:407-411.
Gupta S, Chaudhuri T, Ganguly DK, Giri AK. 2001. Anticlastogenic effects of black tea (World blend) and its two active polyphenols theaflavins and thearubigins in vivo in Swiss albino mice. Life Sci 69:2735-2744.
Halder B, Pramanick S, Mukhopadhyay S, Giri AK. 2005. Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity by black tea polyphenols theaflavins and thearubigins in multiple test systems. Food Chem Toxicol 43:591-597.
Haslam E. 2003. Thoughts on thearubigins. Phytochem 64:61-73.
Heijnen CGM, Haenen GRMM, Wiseman SA, Tijburg LBM, Bast A. 2000. The interaction of tea flavonoids with the NO-system: discrimination between good and bad NO. Food Chem 70:365-370.
Ivanoics G, Bruckner V. 1937. Chemishe und immunologische studien uber den mechanismus der milzbrandinfektion und immunitat, die chemische struktur der kapselsubstanz des milzbrandbazillus und der serologisch identischen spezifischen substanz des Bacillus mesentericus. Z Immunitatsforsch 90:304-318.
Ivanoics G, Erdos L. 1937. Ein beitrag zum wesen der kapselsubstanz des milzbrandbazillus. Z Immunitatsforsch 90:5-19.
Kunioka M. 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol 47:469-475.
Liang Y, Lu JL, Zhang LY. 2002. Comparative study of cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze]. Int J Food Sci Technol 37:627-634.
Liang Y, Xu Y. 2001. Effect of pH on cream particle formation and solids extraction yield of black tea. Food Chem 74: 155-160.
Liang Y, Xu Y. 2003. Effect of extraction temperature on cream and extractability of black tea [Camellia sinensis (L.) O. Kuntze]. Int J Food Sci Technol 38:37-45.
Lin JK, Chen PC, Ho CT, Lin-Shiau SY. 2000. Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3’-digallate, (-)-epigallocatechin-3-gallate, and propyl gallate. J Agric Food Chem 48:2736-2743.
Lin YL, Tsai SH, Lin-Shiau SY, Ho CT, Lin JK. 1999. Theaflavin-3,3’-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-κB in macrophages. Eur J Pharmacol 367:379-388.
Lodovici M, Casalini C, Filippo CD, Copeland E, Xu X, Clifford M, Dolara P. 2000. Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols. Food Chem Toxicol 38:1085-1088.
Maeda-Yamamoto M, Kawahara H, Tahara N, Tsuji K, Hara Y, Isemura M. 1999. Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem 47:2350-2354.
Maity S, Ukil A, Karmakar S, Datta N, Chaudhuri T, Vedasiromoni JR, Ganguly DK, Das PK. 2003. Thearubigin, the major polyphenol of black tea, ameliorates mucosal injury in trinitrobenzene sulfonic acid-induced colitis. Eur J Pharmacol 470:103-112.
McManus JP, Davis KG, Beart JE, Gaffney SH, Lilley TH, Haslam E. 1985. Polyphenol interactions. Part I – introduction: some observations on the reversible complexation of polyphenols with proteins and polysaccharides. J C S Perkin Trans 2:1429-1438.
Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C. 1996. The antioxidant properties of theaflavins and their gallate esters – radical scavengers or metal chelators? FEBS Lett 392:40-44.
Nagalakshmi S, Ramaswamy MS, Natarajan CP, Seshadri R. 1984. The role of added carbohydrates in tea cream solubilisation. Food Chem 13:69-77.
Obanda M, Owuor PO, Mang’oka R. 2001. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem 75:395-404.
Obanda M, Owuor PO, Mang’oka R, Kavoi MM. 2004. Changes in thearubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chem 85:163-173.
Ohsawa KI, Nakagawa SY, Kimura M, Shimada C, Tsuda S, Kabasawa K, Kawaguchi S, Sasaki YF. 2003. Detection of in vivo genotoxicity of endogenously formed N-nitroso compounds and suppression by ascorbic acid, teas and fruit juices. Mutation Res 539:65-76.
Pan MH, Liang YC, Lin-Shiau SY, Zhu NQ, Ho CT, Lin JK. 2000a. Induction of apoptosis by the oolong tea polyphenol theasinensin A through cytochrome c release and activation of caspase-9 and caspase-3 in human U937 cells. J Agric Food Chem 48:6337-6346.
Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. 2000b. Suppression of lipopolysaccharide-induced nuclear factor-κB activity by theaflavin-3,3’-digallate from black tea and other polyphenols through down-regulation of IκB kinase activity in macrophages. Biochem Pharmacol 59:357-367.
Paquay JBG, Haenen GRMM, Stender G, Wiseman SA, Tijburg LBM, Bast A. 2000. Protection against nitric oxide toxicity by tea. J Agric Food Chem 48:5768-5772.
Penders MHGM, Jones DP, Needham D, Pelan EG. 1998a. Mechanistic study of equilibrium and kinetic behaviour of tea cream formation. Food Hydrocoll 12:9-15.
Penders MHGM, Scollard DJP, Needham D, Pelan EG, Davies AP. 1998b. Some molecular and colloidal aspects of tea cream formation. Food Hydrocoll 12:443-450.
Roberts EAH, Cartwright RA, Oldschool M. 1959. The phenolic substances of manufactured tea. Ⅰ. Fractionation and paper chromatography of water-soluble substances. J Sci Food Agric 8:72-80.
Roberts EAH, Smith RF. 1963. The phenolic substances of manufactured tea. Ⅸ. – The spectrophotometric evaluation of tea liquors. J Sci Food Agric 14:689-700.
Sang S, Tian S, Jhoo JW, Wang H, Stark RE, Rosen RT, Yang CS, Ho CT. 2003. Chemical studies of the antioxidant mechanism of theaflavins: radical reaction products of theaflavin 3,3’-digallate with hydrogen peroxide. Tetrahedron Lett 44:5583-5587.
Sarkar A, Bhaduri A. 2001. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochem Biophys Res Commun 284:173-178.
Shih IL, Van YT. 2001. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79:207-225.
Shih IL, Van YT, Chang YN. 2002. Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb Technol 31:213-220.
Sikes CS. 1994. Polyamino acid dispersants. United States patent US5328690.
Smith RF. 1968. Studies on the formation and composition of cream in tea infusion. J Sci Food Agric 19:530-534.
Sonoda C, Sakai K, Murase K. 2000. Bitterness relieving agent. World patent WO0021390.
Syfert SW, Spangler LL, Morrison LR. 1988. Tea concentrate having freeze thaw stability and enhanced cold water solubility. United States patent US4748033.
Tanimoto H, Sato H, Kuraishi C, Kido K, Seguro K. 1995. High-absorption mineral-containing composition and foods. United States patent US5447732.
Todisco S, Tallarico P, Gupta BB. 2002. Mass transfer and polyphenols retention in the clarification of black tea with ceramic membranes. Innovat Food Sci Emerg Technol 3:255-262.
Trifiro A, Gherardi S, Belloli S, Saccani G, Aldini R. 1990. Effetti della tecnologia di lavorazione e delle condizioni di magazzinaggio sulle reazioni d’imbrunimento non enzimatico in derivati del pomodoro. Industrie Conserve 65:210-215.
Vijaya K, Ananthan S, Nalini R. 1995. Antibacterial effect of theaflavin, polyphenon 60 (Camellia sinensis) and Euphorbia hirta on Shigella spp.- a cell culture study. J Ethnopharmacol 49:115-118.
Vinson JA, Dabbagh YA. 1998. Tea phenols: antioxidant effectiveness of teas, tea components, tea fractions and their binding with lipoproteins. Nutr Res 18:1067-1075.
Xu H, Jiang M, Li H, Lu D, Ouyang P. 2005. Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem 40:519-523.
Yam TS, Shah S, Hamilton-Miller JMT. 1997. Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Micro Biol Lett 152:169-174.
Yoshida H, Ishikawa T, Hosoai H, Suzukawa M, Ayaori M, Hisada T, Sawada S, Yonemura A, Higashi K, Ito T, Nakajima K, Yamashita T, Tomiyasu K, Nishiwaki M, Ohsuzu F, Nakamura H. 1999. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem Pharmacol 58:1695-1703.
Zhang G, Miura Y, Yagasaki K. 2000. Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett 159:169-173.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top