跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李永棠
研究生(外文):Yung-Tan Lee
論文名稱:中國東部魯皖蘇地區新生代玄武岩之地球化學與岩石成因
論文名稱(外文):Geochemistry and petrogenesis of Cenozoic basaltic rocks from Shandong, Anhui and Jiangsu provinces, eastern China
指導教授:陳汝勤陳汝勤引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:292
中文關鍵詞:玄武岩新生代岩石成因
外文關鍵詞:basaltCenozoicpetrogenesis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別在山東、安徽、江蘇等地區共採集79個玄武岩標本,並在江蘇省境內採集12個超基性捕獲岩(對組成礦物從事微探分析)進行全岩之主要、微量及稀土元素分析、氬-氬定年及鍶-釹同位素分析,探討各區玄武岩之時空變化、岩漿成因及分化、地函源區之特性、可能經歷之深部地質作用以及與地體構造之關係。
根據定年資料,魯皖蘇地區之火山活動可分為三期:早第三紀(古新世)、晚第三紀(漸新世-中新世)和第四紀(更新世)。研究區內火山岩隨著時間由老至新,岩性由矽質玄武岩逐漸轉變為橄欖玄武岩和鹼性玄武岩,晚第三紀(漸新世-中新世)為本區火山活動之過渡期,此時矽質玄武岩與橄欖玄武岩共存;另外本區火山岩之年齡由南(約13.7 Ma)往北(約0.82 Ma)稍有逐漸變年輕之趨勢。
江蘇、安徽和山東地區之玄武岩包括矽質玄武岩、橄欖玄武岩和鹼性玄武岩。山東地區玄武岩之組成礦物中橄欖石為主要之斑晶,其次為鈦輝石,橄欖石斑晶呈自形到半自形,鈦輝石斑晶則常具有環狀構造。安徽地區矽質玄武岩之斑晶主要為斜長石和斜輝石,基質則由斜長石、輝石、磁鐵礦和少量之玻璃質所組成;而鹼性玄武岩斑晶以橄欖石和鈦普通輝石為主。江蘇地區之鹼性玄武岩具微斑狀組織,斑晶以橄欖石為主,其次為含鈦普通輝石,而基質以橄欖石、斜輝石、斜長石和鈦鐵氧化物居多,部份岩樣之橄欖石具有環帶構造。橄欖玄武岩具班狀組織,斑晶以橄欖石和輝石為主,次為斜長石,基質主要由斜長石、輝石和磁鐵礦等礦物所組成。
山東省昌樂地區鹼性玄武岩之(La/Yb)N比值平均值為38.09、橄欖玄武岩之平均值為19.20;蓬萊地區鹼性玄武岩之平均值為52.85、橄欖玄武岩之平均值為42.73、矽質玄武岩之平均值為40.79,上述各類玄武岩(La/Yb)N比值隨著SiO2含量之減少有增大之現象,且蓬萊地區各類玄武岩輕稀土元素富集之程度明顯高於昌樂地區。安徽地區玄武岩稀土元素對SiO2含量作圖顯示除重稀土元素(Yb和Lu)外,整體而言鹼性玄武岩稀土元素之含量普遍高於矽質玄武岩,而矽質玄武岩共容元素(Ni、Co、Cr、Sc)之含量較鹼性玄武岩者稍高。江蘇地區玄武岩中不共容元素對MgO/ΣFeO作圖顯示各不共容元素均與MgO/ΣFeO呈現負變關係,表示在岩漿演化之早期此等不共容元素含量較低,但於晚期則有增高之現象。魯皖蘇地區玄武岩中不共容元素及稀土元素之分佈型態均與洋島玄武岩相似。
區內超基性捕獲岩之Sr87/Sr86(0.702907∼0.704349)和143Nd/144Nd比值(0.512659∼0.513371)變化較大,由虧損地函變至EMⅠ富化型地函,顯示區內之上部地函具有不均質性且部份地函可能均處於虧損狀態,但此地函可能在近期受交代換質作用之影響而富化。魯皖蘇地區尖晶石二輝橄欖岩之平衡溫壓為913℃∼1098℃,13kb∼24.2 kb,石榴子石二輝橄欖岩之平衡溫壓為1112℃∼1171℃,18.6 kb∼22.3 kb。此等捕獲岩之生成深度,應為地表下45∼83公里深處。研究區內上部地函之古地溫梯度線大致介於裂谷-洋脊與大洋地溫線之間且區內尖晶石二輝橄欖岩之落點相當接近大洋地溫線,顯示魯皖蘇地區新生代上部地函應處於「較熱」之狀態,因此區內可能有軟流圈上湧之現象,當軟流圈之物質上升至岩石圈底部時由於壓力減小,可在岩石圈與軟流圈交界處產生不同比
綜合區內玄武岩與超基性捕獲岩之研究資料,筆者認為魯皖蘇地區之岩石圈地函可能已發生過部份熔融,使其處於較虧損之狀態,但流體或熔體之交代換質作用事件可能於近期產生,造成此岩石圈地函化學組成呈現不均質之現象。由於地函對流或物質再循環等地質作用使該區地函受到富含CO2和H2O流體之交代換質作用,局部的富化了區內之岩石圈地函。在新生代時期,拉張作用可能使軟流圈產生上湧或貫入加熱了岩石圈地函之底部,使該處發生不同比例之部分熔融,部份上湧之物質亦可能與岩石圈地函產生不同比例之混合,由於加熱與解壓作用使上述之物質產生不同比例之部分熔融可形成境內各類之玄武質母岩漿。
Abstract
Seventy nine Cenozoic basaltic rocks from Shandong, Anhui and Jiangsu provinces and twelve ultramafic xenoliths from Jiangsu province have been analyzed for major and trace element contents and Sr-Nd isotopic compositions as well as 40Ar-39Ar dating, in order to (1) investigate the temporal and spacial variation of these basaltic rocks, and (2) discuss the origin and fractionation of the parental magma, and (3) identify the geological processes beneath the study area, and (4) evaluate the relationship between the basaltic rocks and geological setting.
Based on 40Ar-39Ar and K-Ar dating, the basaltic volcanism in the study area may be divided into three eruptive episodes: Paleocene, Oligocene to Miocene and Pleistocene. The rock type of analyzed basaltic rocks vary from olivine tholeiite to alkali basalts with time. The eruptive episode of Oligocene to Miocene is a transitional one and tholeiite coexists with olivine tholeiite during that episode. In addition, the age of the analyzed basaltic rocks tends to become younger from south (about 13.7 Ma) to north (about 0.82 Ma).
The common rock types of basaltic rocks from Shandong, Anhui and Jiangsu provinces include quartz tholeiite, olivine tholeiite and alkali basalt. The phenocrysts of basalts from Shandong province consist mainly of olivine (euhedral to subhedral) with minor amount of zoned titanaugite. The phenocrysts of tholeiite from Anhui province consist predominantly of plagioclase and clinopyroxene and the groundmass is mainly composed of plagioclase, pyroxene and magnetite. The major phenocrysts are olivine and titanaugite in the alkali basalt. The phenocrysts of alkali basalt from Jiangsu provinces consist mainly of olivine with minor titanaugite and the groundmass is mainly composed of olivine, clinopyroxene, plagioclase and Ti-Fe oxide minerals. The olivine tholeiite are mostly porphyritic with olivine and pyroxene as the major phenocrysts. The groundmass is mainly composed of pyroxene, plagioclase and magnetite.
The average (La/Yb)N ratios of basaltic rocks from Changlo area are 38.09 and 19.20 for alkali basalt and olivine tholeiite respectively. The average (La/Yb)N ratios of basaltic rocks from Penglai area are 52.85, 42.73 and 40.79 for alkali basalt, olivine tholeiite and tholeiite respectively. The (La/Yb)N ratios of basalts from Shandong provinces increase with decreasing SiO2 contents and LREEs in basalts from Penglai area are higher than those from Changlo area. The rare earth element contents in alkali basalts are generally higher than those in tholeiites expect for Yb and Lu. In addition, the compatible elements (Ni, Co, Cr, Sc) contents in tholeiites are slightly higher than those in alkali basalts. In Jiangsu basaltic rocks the incompatible elements vs. MgO/ΣFeO plots show negative trends indicating that these elements are relatively lower in the early stage of magmatic evolution. The primitive mantle-normalized incompatible elements and chondrite-normalized REE patterns of basaltic rocks of this study are similar to those of OIB.
The 87Sr/86Sr (0.702907~0.704349) and 143Nd/144Nd (0.512659~0.513371) ratios show wider variations, ranging from depleted mantle to EMI-type mantle, indicating upper mantle heterogeneity and some parts of the upper mantle may have undergone the metasomatism event. Calculation based on olivine-spinel geothermometries and orthopyroxene-clinopyroxene geothermo- barometry indicate that the equilibrium conditions of the spinel lherzolite xenoliths and garnet lherzolite xenoliths in the study area are: T= 913-1098℃ , P= 13-24.2kb and T= 1112 ℃-1171℃, P= 18.6-22.3 kb corresponding to depths of 45-83 km. The geothermometer suggests that the geothermal gradient of the upper mantle beneath the study area is approximately between MORB and oceanic geotherm indicating that the mantle may be under a “ hotter” condition. We suggest that lithospheric mantle thinning accompanied by asthenosphere upwelling (or diaprism) caused decompressed partial melting in the study area.
Based on geochemical data of the basalts and ultramafic xenoliths we suggest that the lithospheric mantle may have undergone partial melting which caused the mantle depletion. Part of the upper mantle in the study area may have experienced fluid (enriched in CO2 and H2O) metasomatism resulted in chemical heterogeneity. During Cenozoic era, the extension process may cause asthenosphere upwelling (or diaprism) to heat the bottom of the lithospheric mantle which gave rise to different degree of partial melting and parts of the melts may move upward to mix with the lithospheric mantle and produce different parental magmas in the study area.
目錄
摘要……………………………………………………………………Ⅰ
目錄……………………………………………………………………Ⅴ
圖目……………………………………………………………………Ⅹ
表目……………………………………………………………………XV

第一章 緒論
1.1 前言………………………………………………………………1
1.2 前人研究…………………………………………………………3
1.3 研究目的 ………………………………………………………5

第二章 研究方法
2.1 野外採樣……………………………………………………………7
2.2 岩象觀察……………………………………………………………7
2.3 礦物化學分析………………………………………………………7
2.4 全岩化學分析………………………………………………………7
2.4.1 原子吸收光譜儀分析 …………………………………………12
2.4.2 分光光度計分析 ………………………………………………13
2.4.3 燒失量測定 ……………………………………………………13
2.4.4 感應偶合電漿質譜儀分析 ……………………………………14
2.4.5 氬-氬同位素定年分析…………………………………………14
2.4.5.1 基本原理 ……………………………………………………14
2.4.5.2 樣品前處理及分析過程 ……………………………………15
2.4.6 鍶、釹同位素分析 ……………………………………………15
2.4.7 本文採用玄武質岩類劃分法 …………………………………16
2.4.8 實驗之精密度 …………………………………………………16

第三章 中國東部魯皖蘇地區新生代地質架構及火山岩之分布
3.1大地構造背景 ……………………………………………………18
3.2 中國東部魯皖蘇斷裂構造與新生代火山岩之分布 ……………20

第四章 山東地區新生代玄武岩之岩石學與地球化學
4.1地質概況 …………………………………………………………22
4.2 採樣地點、野外產狀及玄武岩之岩象特徵……………………22
4.3 玄武岩之噴發年代………………………………………………23
4.4 玄武岩之全岩化學………………………………………………26
4.4.1 主要元素………………………………………………………26
4.4.2 微量元素………………………………………………………35
4.4.3 稀土元素………………………………………………………53
4.4.4 玄武岩Sr-Nd同位素組成……………………………………62
4.5 討論與小結………………………………………………………65
4.5.1 玄武岩漿之特性與演化過程…………………………………65
4.5.2 玄武岩之成因…………………………………………………66
4.5.3 岩漿源區之地化特性…………………………………………68
4.5.3 板塊內部玄武岩之特性………………………………………70
4.6 小結………………………………………………………………70

第五章 安徽地區新生代玄武岩之岩石學與地球化學……………74
5.1 地質概況…………………………………………………………74
5.2 採樣地點、野外產狀及玄武岩之岩象特徵……………………75
5.3 玄武岩之噴發年代………………………………………………77
5.4 玄武岩之全岩化學………………………………………………80
5.4.1 主要元素………………………………………………………80
5.4.2 微量元素………………………………………………………81
5.4.3 稀土元素………………………………………………………101
5.4.4 玄武岩Sr-Nd同位素組成……………………………………107
5.5 討論與小結………………………………………………………109
5.5.1 玄武岩漿之特性與演化過程…………………………………109
5.5.2 玄武岩之成因…………………………………………………112
5.5.3 岩漿源區之地化特性…………………………………………114
5.5.4 板塊內部玄武岩之特性………………………………………118
5.6 小結………………………………………………………………118

第六章 江蘇地區新生代玄武岩之岩石學與地球化學
6.1地質概況 …………………………………………………………123
6.2 採樣地點、野外產狀及玄武岩之岩象特徵 ……………………124
6.3 玄武岩之噴發年代………………………………………………128
6.4 玄武岩之全岩化學………………………………………………129
6.4.1 主要元素………………………………………………………129
6.4.2 微量元素………………………………………………………138
6.4.3 稀土元素………………………………………………………149
6.4.4 玄武岩Sr-Nd同位素組成……………………………………154
6.5 討論與小結………………………………………………………158
6.5.1 玄武岩漿之特性與演化過程…………………………………158
6.5.2 玄武岩之成因…………………………………………………162
6.5.3 岩漿源區之地化特性…………………………………………162
6.5.4 板塊內部玄武岩之特性………………………………………163
6.6 小結………………………………………………………………163

第七章 江蘇地區新生代玄武岩中捕獲岩之礦物學與地球化學
7.1 前言………………………………………………………………170
7.2 捕獲岩產出之地質概況與採樣地點……………………………171
7.3 捕獲岩之種類與岩象學…………………………………………172
7.4 捕獲岩之礦物化學………………………………………………173
7.4.1 礦物化學特性…………………………………………………173
7.4.2 捕獲岩的平衡溫壓……………………………………………193
7.5 捕獲岩之全岩化學………………………………………………194
7.5.1 主要元素………………………………………………………194
7.5.2 微量元素………………………………………………………198
7.5.3 稀土元素………………………………………………………208
7.5.4 超基性捕獲岩Sr-Nd同位素…………………………………212
7.6 討論………………………………………………………………212
7.6.1 地函交代換質作用……………………………………………212
7.6.2 捕獲岩之可能成因……………………………………………217
7.7 小結………………………………………………………………217

第八章 綜合討論
8.1 中國東部魯皖蘇地區新生代玄武岩之時空分布與地體構造的關係
8.1.1 火山活動之時空分布…………………………………………219
8.1.2 火山活動與地體構造之關係…………………………………220
8.2 中國東部魯皖蘇地區新生代玄武岩之地化特徵………………223
8.2.1 原始岩漿與岩漿之結晶分化作用……………………………223
8.2.2 玄武質岩漿具有不共容元素富化之特性……………………224
8.2.3 南北地區玄武岩地化特性之差異……………………………224
8.2.4 郯廬斷裂帶兩側玄武岩地化特性之差異……………………229
8.3 中國東部魯皖蘇地區大陸岩石圈之地球化學特性……………229
8.3.1 上部地函之化學特性…………………………………………229
8.3.2 超基性捕獲岩之平衡溫壓範圍………………………………239
8.3.3 上部地函之古地溫梯度………………………………………239
8.3.4 上部地函剖面概略圖之建構…………………………………241
8.3.5 上部地函經歷不同強度之交代換質作用……………………241
8.3.6 交代換質流體之化學特徵……………………………………243
8.4 中國東部魯皖蘇新生代玄武岩之岩石成因……………………248
8.4.1 流體交代換質作用與富化地函之形成………………………248
8.4.2 部份熔融作用與各類岩漿之生成……………………………248
8.4.3 富化岩石圈地函組成與虧損軟流圈組成之混合……………249
8.4.4 玄武質岩類之可能形成模式…………………………………250

第九章 結論…………………………………………………………253

誌謝……………………………………………………………………256

參考文獻………………………………………………………………258













圖目
圖一 中國東部新生代玄武岩與超基性捕獲岩之分布………………2
圖二 中國東部郯廬斷裂帶中南段新生代玄武岩之分布略圖………8
圖三 中國東部新生代玄武岩與四個前寒武紀地塊之分布 ………19
圖四 山東省東、中西部之構造環境和侵入岩之分布圖……………24
圖五 山東省境內新生代玄武岩應存礦物投影圖 …………………25
圖六 山東省境內新生代玄武岩主要元素對SiO2作圖……………32
圖七 山東省境內新生代玄武岩共容元素對MgO/ΣFeO作圖………40
圖八 山東省境內玄武質岩類Ni、Cr、Co和Sc含量對MgO作圖..42
圖九 山東省境內新生代玄武岩不共容元素對SiO2作圖…………45圖十 山東省境內玄武質岩類中La對La/Yb作圖…………………49
圖十一 山東省新生代玄武岩之不共容元素經原始地函
(Sun and McDonough,1989)標準化後之分布型態圖……50
圖十二 山東地區玄武質岩類不共容元素之平均值經原始地函標準化後與洋島玄武岩(OIB)、正常中洋脊玄武岩(N-MORB)和富化型中洋脊玄武岩(E-MORB)之比較圖……………………………54
圖十三 山東省境內新生代玄武岩稀土元素對SiO2作圖…………55
圖十四 山東省新生代玄武岩稀土元素含量經球粒隕石
(Sun and McDonough, 1989)標準化後的分佈型態圖……58
圖十五 山東地區玄武質岩類稀土元素之平均值含量經球粒隕石標準化後與洋島玄武岩(OIB)、正常中洋脊玄武岩(N-MORB)和富化型中洋脊玄武岩(E-MORB)之比較圖 …………………61
圖十六 山東地區新生代玄武岩143Nd/ 144Nd對87Sr/ 86Sr作圖
………………………………………………………………64
圖十七 山東地區玄武質岩類MgO對100*FeO/(MgO+FeO)作圖 …67
圖十八 山東地區玄武質岩類Zr對Nb和Y作圖……………………69
圖十九 山東省境內新生代玄武2Nb-Zr/4-Y成份變化圖…………71
圖二十 山東省境內新生代玄武Ti/100-Zr-3Y成份變化圖………72
圖二十一 安徽省東部玄武岩分布圖 ………………………………76
圖二十二 安徽省境內新生代玄武岩應存礦物投影圖 ……………78
圖二十三 安徽省境內新生代玄武岩主要元素對SiO2作圖………85
圖二十四 安徽省境內新生代玄武岩之共容元素對SiO2作圖 ……91
圖二十五 安徽省境內新生代玄武岩之不共容元素對SiO2作圖…94
圖二十六 安徽地區新生代玄武岩之不共容元素經原始地函
(Sun and McDonough,1989)標準化後之分布型態圖…98
圖二十七 安徽地區玄武質岩類之不共容元素之平均值經原始地函標準化後與洋島玄武岩(OIB)、正常中洋脊玄武岩(N-MORB)和富化型中洋脊玄武岩(E-MORB)之比較圖……………100
圖二十八 安徽省境內新生代玄武岩之稀土元素對SiO2作圖……102
圖二十九 安徽地區新生代玄武岩之稀土元素含量經球粒隕石
(Sun and McDonough, 1989)標準化後的分佈型態圖…105
圖三十 安徽地區玄武質岩類之稀土元素平均值含量經球粒隕石標準化後與洋島玄武岩(OIB)、正常中洋脊玄武岩(N-MORB)和富化型中洋脊玄武岩(E-MORB)之比較圖…………………108
圖三十一 安徽地區新生代玄武岩143Nd/ 144Nd對87Sr/ 86Sr作圖…111
圖三十二 安徽地區玄武質岩類之MgO對100*FeO/(MgO+FeO)作圖 ………………………………………………………113
圖三十三 安徽省境內新生代玄武岩之Y對Zr之作圖 …………115
圖三十四 安徽省新生代玄武岩之高度不共容元素對Th作圖 …116
圖三十五 安徽省境內新生代玄武之2Nb-Zr/4-Y成份變化圖 …119
圖三十六 安徽省境內新生代玄武之Ti/100-Zr-3Y成份變化圖.120
圖三十七 嘉山-盱眙-六合地區玄武岩分佈圖……………………125
圖三十八 江蘇省境內新生代玄武岩應存礦物投影圖……………126
圖三十九 江蘇地區玄武岩全岩之Na2O+K2O與SiO2的成分變化圖
…………………………………………………………127
圖四十 江蘇省境內新生代玄武岩主要元素對SiO2作圖………135
圖四十一 江蘇省境內新生代玄武岩MgO對Ni、Cr和Co含量作圖
……………………………………………………………139
圖四十二 江蘇省境內新生代玄武岩共容元素對MgO/ ΣFeO作圖
……………………………………………………………144
圖四十三 江蘇省境內新生代玄武岩不共容元素對MgO/ ΣFeO作圖
……………………………………………………………145
圖四十四 江蘇地區玄武質岩類之不共容元素經原始地函
(Sun and McDonough, 1989)標準化後之分佈型態圖..147
圖四十五 江蘇地區玄武質岩類不共容元素之平均值經原始地函標準化後與洋島玄武岩(OIB)、正常中洋脊玄武岩(N-MORB)和富化型中洋脊玄武岩(E-MORB)之比較 ……………………150
圖四十六 江蘇省境內新生代玄武岩稀土元素對MgO/ ΣFeO作圖
……………………………………………………………151
圖四十七 江蘇地區新生代玄武岩稀土元素含量經球粒隕石
(Sun and McDonough, 1989)標準化後之分佈型態圖..155
圖四十八 江蘇地區玄武質岩類稀土元素之平均值含量經球粒隕石標準化後與洋島玄武岩(OIB)、正常中洋脊玄武岩(N-MORB)和富化型中洋脊玄武岩(E-MORB)之比較圖……………157
圖四十九 江蘇地區新生代玄武岩143Nd/ 144Nd對87Sr/ 86Sr作圖
……………………………………………………………160
圖五十 江蘇地區玄武質岩類MgO對100*FeO/(MgO+FeO)作圖 …161
圖五十一 江蘇省新生代玄武岩Y對Zr之作圖…………………164
圖五十二 江蘇地區新生代玄武岩Rb/Nb對K/Ba作圖……………165
圖五十三 江蘇省境內新生代玄武2Nb-Zr/4-Y成份變化圖 ……166
圖五十四 江蘇省境內新生代玄武Ti/100-Zr-3Y成份變化圖 …167
圖五十五 研究區內超基性捕獲岩之直輝石及斜輝石在三個端成分之投影圖…………………………………………………180
圖五十六 超基性捕獲岩內直輝石及斜輝石之Mg/(Mg+Fe)比值分別
對橄欖石之Fo值作圖 …………………………………181
圖五十七 超基性捕獲岩中直輝石之Al2O3對MgO/MgO+ΣFeO作圖
……………………………………………………………182
圖五十八 江蘇地區捕獲岩中斜輝石之TiO2對Cr2O3含量作圖
……………………………………………………………186
圖五十九 Ⅰ型捕獲岩中斜輝石之Na2O對Al2O3含量作圖 ………188
圖六十 Ⅰ型捕獲岩中斜輝石Al2O3對Na2O含量作圖 ……………189
圖六十一 研究區內Ⅰ型捕獲岩中尖晶石之Cr/(Cr+Al)對Mg/(Mg+Fe+2)作圖 ………………………………………192
圖六十二 Mysen(1976)實驗所得〔Ca/(Ca+Mg)〕OPX與平衡溫壓之關係圖 ……………………………………………………195
圖六十三 江蘇地區尖晶石二輝橄欖岩經Mysen(1976)溫壓計推算結果於溫壓作圖上之分布情況…………………………197
圖六十四 江蘇地區超基性捕獲岩MgO/ΣFeO對主要元素作圖…201
圖六十五 江蘇地區超基性捕獲岩之MgO/ΣFeO對微量元素作圖
……………………………………………………………205
圖六十六 江蘇地區超基性捕獲岩不共容元素經原始地函(Sun and
McDonough, 1989)標準化後之分布型態圖……………209
圖六十七 江蘇地區超基性捕獲岩之MgO/ΣFeO對輕稀土元素作圖
……………………………………………………………210
圖六十八 江蘇地區超基性捕獲岩稀土元素經球粒隕石(Sun and McDonough,1989)標準化後之分布型態圖……………211
圖六十九 江蘇地區超基性捕獲岩143Nd/ 144Nd對87Sr/ 86Sr作圖 ………………………………………………………214
圖七十 歐亞地區GPS資料所估算出之板塊移動速度與方向……221
圖七十一 本研究區域內南北地區中玄武岩之主要元素對SiO2作圖
……………………………………………………………225
圖七十二 本研究區域內南北地區中玄武岩之不共容元素對SiO2作圖 …………………………………………………………227
圖七十三 本研究區域內南北地區中玄武岩之共容元素對MgO/ΣFeO作圖………………………………………………………228
圖七十四 本研究區域內南北地區新生代玄武岩143Nd/ 144Nd對87Sr/ 86Sr作圖 ………………………………………………230
圖七十五 本研究區域內玄武岩化學組成對距郯廬斷裂帶大約距離(km)作圖…………………………………………………231
圖七十六 魯皖蘇地區超基性捕獲岩143Nd/ 144Nd對87Sr/ 86Sr作圖
……………………………………………………………238
圖七十七 中國東部魯皖蘇地區超基性捕獲岩之平衡溫壓圖……240
圖七十八 中國東部魯皖蘇晚新生代上部地函之剖面概略圖……242
圖七十九 魯皖蘇地區新生代玄武岩Zr/Sm對Hf/Sm作圖………244
圖八十 中國東部魯皖蘇地區新生代玄武岩K2O/TiO2對Zr/Ba作圖
……………………………………………………………245
圖八十一 中國東部魯皖蘇地區新生代玄武岩Sr87/Sr86對La/Nb作圖
…………………………………………………………247
圖八十二 中國東部魯皖蘇地區新生代玄武岩143Nd/ 144Nd對87Sr/ 86Sr作圖………………………………………………………251



表目
表一 山東、安徽和江蘇地區玄武岩採樣位置、岩性及標本編號
……………………………………………………………………9
表二 AG1標本重複分析結果…………………………………………17
表三 山東地區玄武質岩類K-Ar和40Ar-39Ar定年結果……………27
表四 山東地區玄武質岩類之主要元素及C.I.P.W.應存礦物之含量
…………………………………………………………………28
表五 山東地區玄武質岩類之微量元素及稀土元素含量分析結果…36
表六 山東地區新生代玄武岩中鍶-釹同位素組成…………………63
表七 安徽地區玄武質岩類K-Ar和40Ar-39Ar定年結果……………79
表八 安徽地區玄武質岩類之主要元素及C.I.P.W.應存礦物之含量
……………………………………………………………………82
表九 安徽地區玄武質岩類之微量元素及稀土元素含量分析結果..88
表十 安徽地區新生代玄武岩中鍶-釹同位素組成 ………………110
表十一 江蘇地區玄武質岩類K-Ar和40Ar-39Ar定年結果 ………130
表十二 江蘇地區玄武質岩類之主要元素及C.I.P.W.應存礦物之含量……………………………………………………………131
表十三 江蘇地區玄武質岩類之微量元素及稀土元素含量分析結果
………………………………………………………………140
表十四 江蘇地區新生代玄武岩中鍶-釹同位素組成 ……………159
表十五 江蘇地區盤石山超基性捕獲岩中橄欖石之化學成分……174
表十六 江蘇地區盤石山超基性捕獲岩中直輝石之化學成分……177
表十七 江蘇地區盤石山超基性捕獲岩中斜輝石之化學成分……183
表十八 江蘇地區盤石山超基性捕獲岩中尖晶石之化學成分……190
表十九 兩種地質溫壓計所估算超基性捕獲岩的平衡溫壓………196
表二十 江蘇地區超基性捕獲岩之主要元素分析結果……………199
表二十一 江蘇地區超基性捕獲岩之微量與稀土元素分析結果…203
表二十二 本研究地區超基性捕獲岩中斜輝石之鍶-釹同位素組成
…………………………………………………………213
中文部分:
王慧芬、楊學昌、朱炳泉、范嗣昆、戴橦謨(1988)中國東部新生代火山岩K-Ar年代學及其演化。地球化學,第一期1-12頁。
王鴻楨(1982)中國地殼構造發展的主要階段,地球科學,第三期,155-178頁。
王國龍(2000)台灣北部及外海晚上新世-第四紀火山岩的地球化學特性與岩石成因。國立台灣大學地質學研究所博士論文,共169頁。
支霞臣、李彬賢、陳道公(1995)盤石山幔源透輝石微量元素地球化學。地質科學,第30卷,第四期384-392頁。
池際尚(1988)中國東部新生代玄武岩及地幔研究。中國地質大學出版社,共277頁。
任紀舜、陳廷愚、牛寶貴、劉志剛、劉風仁(1992)中國東部及鄰區大陸岩石圈的構造演化與成礦。科學出版社,共205頁。
肖增岳、王藝芬(1987)華東地區新生代火成岩和超鎂鐵岩包體。中國東部新生代玄武岩及深源岩石包體,鄂莫嵐、趙大升主編。科學出版社,第269∼347頁。
何恭算(1998)華南地區新生代玄武岩之岩石學與地球化學研究。國立臺灣大學海洋研究所博士論文,共580頁。
金隆裕(1989)郯廬斷裂帶中段新生代火山岩的岩石學和地球化學特徵。岩石學報,第四期45-57頁。
李春昱、王荃、劉雪亞、湯耀慶(1982)九州大地構造圖說明書,中文45頁,英文49頁,地質出版社。
高維明、李家發、孫竹友(1980) 沂沭大裂谷的生成與演化。地震地質,第3期11-24頁。
許志琴(1980) 談談裂谷。地質評論,第26卷,第3期,22-34頁。
陳道公、彭子成(1985) 山東新生代火山岩K-Ar年齡和Pb-Sr同位素特徵。地球化學,第4期6-14頁。
陳道公、彭子成(1988) 蘇皖新生代火山岩的鉀氬年齡和鉛鍶同位素特徵。岩石學報,第2期,3-12頁。
陳道公、周海濤、楊杰東、王銀喜(1990) 魯、皖、蘇新生代火山岩成因及地幔源特徵的同位素證據。中國上地幔特徵與動力學論文集,地震出版社,124-131頁。
陳道公、李彬賢、支霞臣(1994)江蘇盤石山幔源橄欖岩包體成因的地球化學。地球化學,第23卷,第1期,13-24頁。
陳道公(1992) 郯廬斷裂帶中南段新生代玄武岩地球化學。中國新生代火山岩年代學與地球化學(劉若新主編),地震出版社,171-209頁。
陳荷薪(2002) 江蘇省南京市附近新生代玄武岩之地球化學與岩石成因。國立臺灣大學海洋研究所碩士論文,共98頁。
馮銳(1985)中國地殼厚度及上地幔密度分佈(三維反演結果)。地震學報,第7卷,第2期,143-157頁。
黃邦強、張朝文、金以鐘(1990) 大地構造學基礎及中國區域構造概要。地質出版社,共212頁。
黃汲清、任紀舜、姜春發(1979)中國大地構造基本輪廓,地質學報,第二期,117-135頁。
畢慶昌(1982)中國山系內的華夏系。華夏月刊,第126期,1-24頁。
溫大任(1996)祈連褶皺帶中斷花岡岩類之岩石學、元素及鍶、釹同位素地球化學研究。國立成功大學地球科學研究所碩士論文,共95頁。
許朱男(1996)中國東北及山東地區新生代火山岩之岩石學及地球化學。國立臺灣大學海洋研究所博士論文,共398頁。
陸鳳香(1988)中國東部新生代的上地幔特徵。中國東部新生代玄武岩及上地幔研究,池際尚主編。中國地質大學出版社,第176~200頁。
張儒媛和叢柏林(1987)中國東部新生代火成岩系及其超鎂鐵質岩包體。中國東部新生代玄武岩及深源岩石包體,鄂莫嵐、趙大升主編。科學出版社,第349∼467頁。
張銘杰、王先彬、劉剛、李立武(1999)中國東部新生代鹼性玄武岩及幔源捕虜體中的流體組成。地質學報,第73卷第二期,162-166頁。
鄂莫嵐、趙大升(1987) 中國東部新生代玄武岩及深源包體岩石。科學出版社,共490頁。
趙海玲(1990)東南沿海地區晚第三紀-第四紀大陸裂谷型火山作用及深部作用過程。中國地質大學出版社,共163頁。
趙海玲、鄧晉福、賀懷宇、曹永清(1998)造山帶陸殼增厚的一個岩石記錄-以濟南輝長岩及其包體研究為例。地學前緣,第五卷第四期,第251∼256頁。
趙大升、鄭學正(1987)華北地區新生代玄武質火山岩及超鎂鐵岩包體。中國東部新生代玄武岩及深源岩石包體,鄂莫嵐、趙大升主編。科學出版社,第133∼268頁。
鄭洪漢、高維明、朱照宇、黃寶林、盧良財(1991)山東半島與蘇皖北部的第四紀火山活動,地球化學,第三期,第205-211頁。
鄭永飛 (1999)化學地球動力學。科學出版社,共392頁。
劉若新(1992) 中國新生代火山岩年代學與地球化學。地震出版社,共427頁。
劉叢強、解廣轟、增田彰正(1995)中國東部新生代玄武岩的地球化學(Ⅱ)Sr、Nd、Ce同位素組成。地球化學。第24卷,第3期,第203-214頁。
英文部分:
Akella, J. (1976) Garnet pyroxene equilibria in the system CaSiO3- MgSiO3-Al2O3 and in a natural mineral mixture. Amer. Mineral. 61, 589-598.
Alle`gre C. and Turcotte D. L. (1986) Implications of a two-component marble-cake mantle. Nature 323, 123–127.
Ames, L., Zhou, G. Z. and Xiong, B. C. (1996) Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics 15:472–489.
Arndt, N. T. and Christensen, U. (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constrains. J. Geophy. Res. 97, 10967-10981.
Basu, A. R., Wang, J. W., Huang, W. K., Xie, G. H. and Tatsumoto, M. (1991) Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth Planet. Sci. Lett. 105:149–169.
Bergman, S. C. (1982) Petrogenetic aspects of the alkali basaltic lavas and included megacrysts and nodules from the Lunar Crater Volcanic Field, Nevada, U. S. A., Ph. D. dissertation, Princeton Univ., 432P.
Bergman, S. C. and Dubessy, J. (1984) CO2-CO fluid inclusions in a composite periodtite xenolith: implications for upper mantle oxygen fugacity. Contrib Mineral Petrol 85, 1-13.
Bodinier, J.-L., Merlet, C., Bedini, R. M., Simien, F., Remaid, R. and Carrido, C. J. (1996) The distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim. Cosmochim. Acta 60, 545-550.nd H. O. A. Meyer (eds.), The Mantle Sample: Inclusions in Kimberlites and Other Volcanics, Amer. Geophys. Union, 173-182.
Boettcher, A. L. and O’Neil, J. R. (1980) Stable isotope, chemical and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Amer. J. Sci. 280A, 549-621.
Boettcher, A. L., O’Neil, J. R., Windon, K. E., Stewart, D. C. and Wilshire, H. G. (1979) Metasomatism of the upper mantle and the genesis of kimberlites and alkali basalts. In: F. R. Boyd and H. O. A. Meyer (eds.), The Mantle Sample: Inclusions in Kimberlites and Other Volcanics, Amer. Geophys. Union, 173-182.
Boyd, F. R. (1973) A pyroxene geotherm. Geochim. Cosmochim. Acta 37, 2533-2546.
Brandon, A. D., Walker, R. J., Morgan, J. W., Norman, M. D. and Prichard, H. M. (1998) Coupled 186Os and 187Os evidence for core mantle interaction. Science 280, 1570–1573.
Brey, G. P. and Kohler, T. (1990) Geothermobarometry in four- phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353-1378.
Brook, C. K. and Nielsen, T. F. D. (1982) The East Greenland continental margin: a transition between oceanic and continental magmatasm. J. Geol. Soc. London 39, 265-275.
Burchfiel, B. C. (2004) New technology; New Geological Challenges. GSA Today 14, 4-10.
CAGS(Chinese Academy of Geological Sciences)(1974) Geological Atlas of China.
Campbell, I. H. (2002) Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle. Geochim. Cosmochim. Acta 66, p.1651-1661.
Carswell, D. A. (1980) Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism. A review. Lithos 13, 121-138.
Carter, J. L. (1970) Mineralogy and chemistry of the earth’s upper mantle based on the partial fusion-partial crystallization model. Geol. Soc. Amer. Bull. 81, 2021-2034.
Chauvel, C. and Jahn, B. M. (1984) Nd-Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France. Geochim. Cosmochim. Acta 48, 93-110.
Chavagnac, V. and Jahn, B. M. (1996) Coecite-bearing eclogites from the Bixiling Complex, Dabie Mountains,China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chem. Geol. 133:29–51.
Chen, D. G. (1992) Geochemistry of Cenozoic basalts from the southern-central part of Tanlu fault zone. In Liu, R. X., ed. The age and geochemistry of Cenozoic volcanic rocks in China. Beijing, Seismology, p.171–200. (In Chinese.)
Chen, F. K., Siebel, W., Guo, J. H., Cong, B. L. and Satir, M. (2003) Proterozoic magmatism and metamorphism recorded in gneisses from the Dabie high-pressure metamorphic zone, eastern China: evidence from zircon U-Pb geochronology. Precambr. Res. 120, 131-148.
Chen, S. H., O’Reilly, S. Y., Zhou, X. H., Griffin, W. L., Zhang, G. H., Sun M., Feng, J. L. and Zhang, M. (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenolith. Lithos 56, 267–301.
Chung, S. L. (1990) Geochemistry of megacrysts and xenoliths in alkali basalts from western Taiwan. Ph.D. dissertation. National Taiwan University (in Chinese).
Chung, S. L. (1999) Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between North and South China. J. Geol. 107,301-312.
Chung, S. L., Lo, C. H., Li, X. H., Griffin, W. L., O’Reilly, S. Y. and Chen, C. H. (1997) From mountains to basin: a Tibetan model for the post-collisional magmatic and tectonic evolution in North China. EOS Trans. Am. Geophys. Union 78:F649.
Chung, S. L., Sun, S. S., Tu, K., Chen, C. H. and Lee, C. Y.(1994) Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: product of lithosphere-asthenosphere interaction during continental extension. Chem. Geol. 112, 1-20.
Condie, K. C., Cox, J., O’Reilly, S. Y. Griffin, W. L. and Kerrich, R. (2004) Distribution of high field strength and rare earth elements in mantle and lower crustal xenoliths from the southwestern United States: The role of grain-boundary phases. Geochim. Cosmochim. Acta 68, 3919-3942.
Davis, B. T. C. and Boyd, F. R. (1966) The join Mg2Si2O6-CaMgSi2O6 at 30 kb and its application to pyroxenes from kimberlite. J. Geolphys. Res 71, 3567-3576.
Dick, H. J. B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54-76.
Dostal, J., Dupuy, C., Zhai, M. Z. and Zhi, X. C.(1988) Geochemistry and origin of Pliocene alkali basaltic lavas from Anhui-Jiangsu, eastern China. Geochem. J. 22, 165-176.
Dostal, J., Zhi, X. C., Muehlenbachs, K., Dupuy, C. and Zhai, M. Z. (1991) Geochemistry of Cenozoic alkali basaltic lavas from Shandong Province, eastern China. Geochem. J. 25, 1-16.
Dupuy, C., Liotard, J. M. and Dostal, J. (1992) Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim. Cosmochim. Acta 56, 2417-2423.
Fabries, J. (1979) Spinel-olivine geothermometry in periodtites from ultramafic complexes. Contrib. Mineral. Petrol. 69, 329-336.
Fan, Q. C. and Hooper, P. R. (1989) The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms. J. Petrol. 30, 1117-1158.
Fan, Q. and Liu, R. (1996) The high temperature granulite xenoliths in Hannuoba basalt. Chin. Sci. Bull. 41, 235–238 (in Chinese).
Fan Q. C., Liu R. X., Li H. M., Sui J. L. and Lin Z. R. (1998) Zircon chronology and REE geochemistry of granulite xenoliths at Hannuoba. Chinese Sci. Bull. 43, 1510–1515.
Fan, W. M., Zhang, H. F., Baker, J., Jarvis, K. E., Mason, P. R. D. and Menzies, M. A. (2000) On and off the North China Craton: where is the Archaean keel? J. Petrol. 41, 933-950.
Fan, W.-M., Guo, F., Wang, Y.-J., Lin, G. and Zhang, M. (2001) Postorogenic bimodal volcanism along the Sulu orogenic belts in Eastern China. Phys. Chem. Earth, Part A 26, 733– 746.
Faure, M., Lin, W. and Le Breton, N. (2001) Where is the North China–South China block boundary in eastern China. Geology 29, 119– 122.
Frey, F. A. (1980) The origin of pyroxenites and garnet pyroxenes from Salt Lake Crater, Oahu, Hawaii: trace element evidence. Amer. J. Sci. 280A, 427-449.
Frey, F. A. and Green, D. H. (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanite. Geochim. Cosmochim. Acta 38, 1023-1059.
Frey, F. A. and Prinz, M. (1978) Ultramafic inclusions from San Carlos, Arizona: petrological and geochemical data bearing on their petrogenesis. Earth Planet. Sci. Lett. 38, 129-176.
Frey, F. A., Green, D. H. and Roy, S. D. (1978) Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J. Petrol. 19, 463-513.
Fujimaki, H., Tatsumoto, M. and Aoki, K. (1984) Partition coefficients of Hf, Zr and REE between phenocrysts and groundmasses. Proceedings of the fourteenth lunar and planetary science conference, Part 2. J. Geophys. Res., 89, Suppl. B662-B672.
Furman, T. (1995) Melting of metasomatized subcontinental lithosphere: undersaturated mafic lavas from Rungwe, Tanzania. Contrib. Mineral. Petrol. 112, 97-115.
Gao, V. M., Li, G. L. and Sun, Z. Y.(1979) The formation and evolution of Yishu continental rift. Bulletin of Shandong Geological Society(in Chinese).
Green, D. H. and Ringwood, A. E. (1970) Mineralogy of peridotitic compositions under mantle conditions. Phys. Earth Planet. Inter. 3, 359-371.
Green, D. H. and Lieberman, R. C. (1975) Phase equilibrium and elastic properties of a pyrolite model of the oceanic upper mantle. Tectonophysics 32, 61-62.
Green, D. H. and Wallace, M. E (1988) Mantle metasomatism by ephemeral corbonatite melts. Nature 336, 459-462.
Griffin, W. L., O’Reilly, S. Y. and Ryan, C. G.(1992) Composition and thermal structure of the lithosphere beneath south Africa, Siberia and China: proton microscope studies. Int. Symp. on Cenozoic volcanic rocks and deep-seated xenoliths in China and its environ (Beijing, September 8-10, 1992). Abstr., p. 65-66.
Griffin, W. L., Zhang, A. D., O’Reilly, S. Y. and Ryan, C. G. (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In Flower, M. F. J., Chung, S. L., Lo, C. H., and Lee, T. Y., eds. Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union Geodyn. Ser. 27, 107-126.
Guo, F., Fan, W. M., Wang, Y.-J. and Lin G. (2001) Late Mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Phys. Chem. Earth 26A, 759–772.
Guo, F., Fan, W., Wang, Y. and Lin, G. (2003) Geochemistry of late Mesozoic mafic magmatism in west Shandong Province, eastern China: Characterizing the lost lithospheric mantle beneath the North China Block. Geochem. J. 37, 63-77.
Gurney, J. J. and Harte, B (1980) Phil. Trans. Royal Soc. London 297, 273-293.
Hacker, B. R., Ratschbacher, L., Webb, L., Ireland, T., Walker, D. and Dong, S. W. (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett. 161:215–230.
Hanyu, T. and Kaneoka, I. (1997) The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 290, 273–276.
Harry, D. L. and Leeman W.P. (1995) Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. J. Geophys. Res. 100, 10255-10269.
Harte, B. (1983) Mantle periodtites and processes-the kimberlite samples. In: C. J. Hawkesworth and M. J. Norry (eds.), Continental Basalts and Mantle Xenoliths. Shiva Pub., London, 46-91.
Hauri, E. H. (1996) Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419.
Hauri, E. H., Shimizu, N., Dieu, J. J. and Hart, S. R. (1993) Evidence for hotspot-related carbonatite metasomastism in the oceanic upper mantle. Nature 365, 221-227.
Hawkesworth, C. J. and Norry, M. J. (1983) Cotinental basalts and mantle xenoliths. Shiva Pub., Nantwich, Cheshire, 272P.
Hawkesworth, C. J., Rogers N and Van, Calstern P. (1984) Mantle enrichment processes, Nature, 331, 331-335.
Hawkesworth, C. J., Kempton, P. D., Roger, N. W. (1990) Continental mantle lithosphere and shallow level enrichment processes in the Earth’s mantle. Earth Planet. Sci. Lett. 96, 256-268.
Hawkesworth, C. J. and Gallagher, K. (1993) Mantle hotspots, plumes and regional tectonics as causes of intraplate magmatism. Terra Nova 5, 552-559.
Hguyen, H., Flower, M.F.J. and Carlson, R. W. (1996) Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EMI-rich asthenosphere with thinned Eurasian lithosphere. Geochim. Cosmochim. Acta 60, 4329-4352.
Ho, K. S., Chen, J. C., Smith, A. D. and Juang, W. S.(2000a) Petrogenesis of two groups of pyroxenite from Tungchihsu, Penghu Islands, Taiwan Strait: implications for mantle metasomatism beneath SE China. Chem. Geol. 167, 355-372.
Ho, K. S., Chen, J. C. and Juang, W. S.(2000b) Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. J. Asian Earth Sci., 18, 307-324.
Ho, K. S., Chen, J. C., Lo, C. H. and Zhao, H. L.(2003) 40Ar-39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis. Chem. Geol. 197, 287-318.
Hofmann, A. W. and Hart, S. R. (1978) An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett. 38, 44–62.
Hsu, C. N., Chen, J. C. and Ho, K. S.(2000) Geochemistry of Cenozic volcanic rocks from Kirin Province, northeast China. Geoch. J. 34, 33-58.
Huang, X. L., Xu, Y. G. and Liu, D. Y. (2004) Geochronology, petrology and geochemistry of the granulite xenolith from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochim. Cosmochim. Acta 68, 127-149.
Ionov, D. (2002) Mantle structure and rifting processes in the Baikal- Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics 351, 41-60.
Ionov, D. (2004) Chemical variations in periodtite xenoliths from Vitim, Siberia: Inferences for REE and Hf behaviour in the garnet-facies upper mantle. Journal of Petrology 45, 343-367.
Ionov, D. A., Dupuy, C., O''Reilly, S. Y., Kopylova, M. G. and Genshaft, Y. S. (1993). Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters 119, 283-297.
Ionov, D. A. and Hofmann, A. W. (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet. Sci. Letters 131, 341-356.
Irvine, T. N. (1965) Chronian spinel as a petrogenetic indicator. 1, Theory. Can. Jour. Earth. Sci., 2, 648-672.
Irving, A.J. (1974) Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. J. Petrol. 15, 1–40.
Irving, A. J. (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. Amer. J. Sci. 280A, 389-426.
Ishibashi, K. (1970) Petrochemical study of basic and ultrabasic inclusion in basaltic rocks from Northern Kyushu, Japan. Kyushu Univ. Fac. Sci. Mem. Ser. D, Geol. 20, 85-146.
Ishii, M. and Tromp, J. (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285, 1231–1236.
Jahn B. M. (1990) Origin of granulites: Geochemical constraints from archean granulite facies rocks of the Sino-Korean craton, China. In Granulites and Crustal Evolution (eds. D. Vielzeuf and Ph Vidal), pp. 471–492. Kluwer Academic Publishers, Netherlands.
Jahn B. M., Auvray B., Cornichet J., Bai Y. L., Shen Q. H., and Liu D. Y. (1987) 3.5 Ga old amphibolites from eastern Hebei province, China: field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precamb. Res. 34, 311–346.
Jaques, A. L. and Green, D. H. (1980) Anhydrous melting of peridotite at 0-15 Kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol. 73, 287-310.
Juang, W. S., and Chen, J. C.(1992) Geochronology and geochemistry of Penghu basalt, Taiwan Strait and their tectonic significance. J. Southeast Asian Earth Sci. 7 (2-3), 185-193.
Kalfoun, F., Ionov, D. A. and Merlet, C. (2002) HFSE residence and Nb-Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet. Sci. Letters 199, 49-65.
Kamber, B. S. and Collerson, K. D. (1999) Origin of ocean-island basalts: A new model based on lead and helium isotope systematics. J. Geophys. Res. 104, 25479–25491.
Kaneshima, S. and Helffrich, G. (1999) Dipping low-velocity later in the mid-lower mantle: Evidence for geochemical heterogeneity. Science 283, 1888–1891.
Keen, C. E.(1985) The dynamics of rifting: deformation of the lithosphere by active and passive driving forces. Geophys. J. R. Astron. Soc. 80, 95-120.
Kellogg, J. B. (2002) Modeling the distribution of isotopic ratios in geochemical reservoirs. Earth Planet. Sci. Letters, 204,183-204.
Kellogg, J. B. (2004) Ph. D. Thesis, Harvard University.
Kempton, P. D. (1987) Mineralogic and geochemical evidence for differing styles of metasomatism in spinel lherzolite xenoliths: enriched mantle source regions of basalts. In: Menzies, M. and Hawkesworth, C. J. (eds) Mantle Metasomatism. New York: Academic Press, pp. 45-89.
Kempton, P. D., Hawkesworth, C. J., Lopez-Escobar, L., Pearson, D. G. and Ware, A. J. (1999) Spinel-garnet lherzolite xenoliths from Pali Aike, Part 2: Trace element and isotopic evidence on the evolution of lithospheric mantle beneath southern Patagonia. In: Gurney, J. J., Gurney, J. L., Pascoe, M. D. and Richardson, S. H. (eds) Proceedings of the 7th International Kimberlite Conference. Cape Town: Red Roof Design, pp. 415-428.
Kepezhinskas, P. K., Defant, M. J. and Drummond, M. S. (1995) Sodium metasomatism in the island arc mantle by slab meltperidotite interaction. J. Petrol. 36, 1505–1527.
Kogiso, T. and Hirschmann, M. M. (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib. Mineral. Petrol. 142, 347–360.
Kogiso, T., Hirschmann, M. M. and Reiners, P. W. (2004) Length scales of mantle heterogeneityies and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta 68, 345-360.
Kuno, H. (1969) Mafic and ultramafic nodules in basaltic of Hawaii. Geol. Soc. Amer. Mem. 115, 189-234.
Kurz, R. P., Jenkins, W. J. and Hart, S. R. (1982) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43-47.
Lanphere, M. A. and Dalrymple, G. B. (1971) A test of the 40Ar/39Ar age spectrum technique on some terrestriall materials. Earth Planet. Sci. Letters, 12, 359-372.
Le Bas, M. J.(1986) A chemical classification of volcanic. J. Petrol. 27 (3), 745-750.
Lee, T. Y., Lo, C. H., Chung, S. L., Chen C. Y., Wang, P. L., Lin, W. P., Nhuyen Hoang, Chi, C. T. and Nguyen Trong Yem (1998) 40Ar-39Ar dating result of Neogene basalts in Vietnam and its tectonic implication. In Flower, M. F. J., Chung, S. L., Lo, C. H. and Lee, T. Y., eds. Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union Geodyn. Ser. 27: 167-195.
Leeman, W. P. and Harry, D. L. (1993) A binary source model for extension related magmatism in the Great Basin, Western North America. Science 262, 1550-1554.
Li, S. G., Xiao, Y. L., Liou, D. L., Chen, Y. Z., Ge, N. J., Zhang, Z. Q. and Sun, S.-S. (1993) Collision of the North China and Yangtse Blocks and formation of coecite-bearing eclogites: timing and processes. Chem. Geol. 109:98–111.
Li, Z. X. (1994) Collision between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology 22, 739-742.
Lin, S. F.(1995) Collison between the North and South China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology 23, 574-575.
Liu, R. X., Chen, W. J., Sun, J. Z. and Li, D. M. (1992) The K-Ar age and tectonic environment of Cenozoic volcanic rocks in China. In Liu, R. X., ed. The age and geochemistry of Cenozoic volcanic rocks in China. Beijing, Seismology, p. 1-43. (In Chinese.)
Liu, C. Q., Masuda, A., and Xie, G. H. (1994) Major- and trace-element compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chem. Geol. 114, 19–42.
Liu, C. Q., Xie, G. H. and Masuda, A. (1995) Geochemistry of Cenozoic basalts from eastern China. II. Sr, Nd and Ce isotopic compositions. Geochimica 24: 203–214. (In Chinese.)
Liu Y.S., Gao, S., Jin, S.Y., Hu, S.H., Sun, M. and Zhao, Z.B. (2001) Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochim. Cosmochim. Acta 65, 2589–2604.
Lloyd, F. E. and Bailey, D. K. (1975) Light element metasomatism of the continental mantle: the evidence and the consequence. Phys. Chem. Earth 9, 389-416.
Loubet, M. (2004) New lecture of mantle source hetrogenetities reconciling the geochemical and geophysical approaches. Geochim. Cosmochim. Acta, A571 (abstract).
MacGregor, I. D. (1974) The system MgO-Al2O3-SiO2: Solubility of Al2O3 in enstatite for spinel and garnet periodtite composition. Amer. Mineral. 59, 110-119.
McKenzie, D. P. (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett. 95, 53-72.
McKenzie, D. P. and Bickle, M. J. (1988) The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625-679.
Menzies, M. A. (1983) Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatac activity. In: Hawkesworth C. J. and Norry M. J. (eds.), Continental Basalts and Mantle Xenoliths. Shiva Pub., London, 92-110.
Menzies, M. A. (ed.) (1990). Continental Mantle. Oxford: Clarendon Press.
Menzies, M. A. and Xu, X. (1998) Geodynamics of the North China Craton. In Flower, M. F. J., Chung, S. L., Lo, C. H., and Lee, T. Y., eds. Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union Geodyn. Ser. 27: 167-195.
Menzies, M. A., Roger, N., Tindle, A. and Hawkesworth, C. J. (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: M. A. Menzies and C. J. Hawkesworth (eds.), Mantle Metasomatism. Acad. Press, Lodon, 313-361.
Menzies, M. A., Fan, W. M. and Zhang, M.(1993) Paleozoic and Cenozoic lithoprobes and the loss of >120km of Archean lithosphere, Sino-Korean Craton, China. In Prichard, H. M., Alabaster, T., Harris, N. B. W. and Neary, C. R., eds. Magmatic processes and plate tectonics. Geol. Soc. Lond. Spec. Publ. 76, 71-81.
Mercier, J. C. (1976) Single-pyroxene geothermometry and geobarometry. Am. Mineral. 61, 603-615.
Mercier (1980) Single pyroxene thermobarometry. Tectonophysics 70, 1-37.
Meschede, M.(1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol. 56,207-218.
Miller, J. A., Mitchell, J. G. and Evans, A. L. (1970) The argon-40/argon- 39 dating method applied to basic rocks. In: S. K. Runcom (ed.), Palaeogeophysics, London, Academic Press, 481-489.
Morris, J. D. and Hart, S. R. (1983) Isotopic and incompatible element constrains of the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta 47, 2015-2030.
Murck, B. W., Burruss, R. C. and Hollister, L. S. (1978) Phase equilibria in fluid inclusions in ultramafic xenoliths. Am Miner, 63: 40-46.
Mysen, B. O. (1976) Experimental determination of some geochemical parameters relating to conditions of equilibration of periodtite in the upper mantle. Amer. Mineral. 61, 677-683.
Mysen, B. O. (1983) Rare earth element partitioning between (H2O+CO2) vapour and upper mantle minerals: experimental data bearing on the conditions of formation of alkali basalt and kimberlite. N. Jb. Mineral. Abh. 146, 41-65.
Mysen, B. O. and Kushiro, I. (1977) Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Amer. Mineral. 62, 843-865.
Nixon, P. H. (1987) Mantle Xenoliths. John Wiley, London, 844P.
Nickel, K. G. and Green, D. H. (1985) Empirical geothermobarometry for garnet periodtites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 73, 158-170.
Norman, M. D. and Garcia, M. O. (1999) Primitive magmas and source
characteristics of the Hawaiian plume: Petrology and geochemistry of shield picrites. Earth Planet. Sci. Lett. 168, 27–44.
Obata, M. (1976) The solubility of Al2O3 in orthopyroxenes in spinel and plagioclase peridotites and spinel pyroxenite. Amer. Mineral. 61, 804-816.
O’Connell, R. J., Kellogg, J. B. and Jacobsen, S. B. (2004) Heterogeneity and geochemical reservoirs in the mantle. Geochim. Cosmochim. Acta, A558(abstract).
O’Hara, M. J., Richardson, S. W. and Wilson, G. (1971) Garnet-peridotite stability and occurrence in crust and mantle. Contrib. Mineral. Petrol. 32, 46-68.
Okay, A. I., and Sengör, A. M. C.(1992) Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology 20, 411-414.
Okay, A. I., Xu, S. T. and Sengör, A. M. C. (1989) Coecite from the Dabie Shan eclogites, central China. Eur. J. Mineral. 1:595–598.
Olafsson, M. and Eggler, D. H. (1983) Phase relations of amphibole, amphibole-carbonate and phlogopite-carbonate peridotite: petrological constraints on the asthenosphere. Earth Planet. Sci. Lett. 64, 305-315.
O’Neill, H.S.C. (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib. Mineral. Petrol. 77, 185–194.
Pearce J. A. and Cann, J. R.(1971) Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth planet. Sci. Lett., 12, 339-349.
Pearce, J. A. and Cann, J. R.(1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Sci. Lett. 19,290-300.
Pearce, J. A. and Norry, M. J. (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 69, 33-47.
Peng, Z. C., Zartman, R. E., Futa, K. and Chen, D. G. (1986) Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chem. Geol. 59:3–33.
Philpotts, J. A. and Schnetzler, C. C. (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba with applications to anorthosite and basalt genesis.. Geochim. Cosmochim. Acta 34, 307-322.
Pilet, S., Hernandez, J. and Sylvester, P. J. (2004) Isotopic signature in OIB mantle sources: The metasomatic alternative. Geochim. Cosmochim. Acta A556.
Reid J. B. and Woods G. A. (1978) Oceanic mantle beneath the southern Rio Grande rift. Earth Planet. Sci. Lett. 41, 303–316.
Reisberg, L., Alle`gre, C. J., and Luck, J.-M. (1991) The Re-Os systematics of the Ronda Ultramafic Complex of southern Spain. Earth Planet. Sci. Lett. 105, 196–213.
Replumaz, A., Karason, H., Hilst, R. D., Besse, J. and Tapponnier, P. (2004) 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomogramphy. Earth Planet. Sci. Letters 221, 103-115.
Ringwood, A. E. (1975) Composition and petrology of the Earth’s mantle. McGrawHill, New York, 618P.
Roche, H., Leterrier, J., Grandclaude, P. and Marchal, M. (1980) A classification of volcanic and Plutonic rocks using R1-R2-diagram and major-element analyses--its relationships with current nomenclature. Chem. Geol. 29, 183-210.
Roedder, E. (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenolcrysts from basalts. Am Mineral, 50: 1746~1782.
Rudnick, R. L., Mcdonough, W. F. and Chappell, B. C. (1993) carbonatete metasomatim in the northern Tanzanian mantle. Earth Planet. Sci. Letters 114, 463-475.
Rudnick, R. L., Barth, M., Horn, I.,and McDonough W. F. (2000) Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science 287, 278–281.
Saal, A. E., Har,t S. R., Shimizu, N., Hauri, E. H. and Layne, G. D. (1998) Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia. Science 282, 1481–1484.
Salters, V. J. M. and Dick, H. J. B. (2002) Mineralogy of the mid-oceanridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72.
Sato, H. (1977) Nickel content of basaltic magma: identifyication of primary magmas and a measure of the degree of olivine fractionation. Litho 10, 113-120.
Seyler, M. and Bonatti, E. (1994) Na, Al4 and Al6 in clinopyroxenes of continental and suboceanic ridge peridotites: a clue to different melting processes in the mantle? Earth Planet. Sci. Lett. 122, 281–289.
Shaw, D. M.(1970) Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 34, 237-243.
Sobolev, A. V., Hofmann, A. W., and Nikogosian, I. K. (2000) Recycled oceanic crust observed in “ghost plagioclase” with the source of Mauna Loa Lavas. Nature 404, 986–990.
Song, Y., Frey, F. A., and Zhi, X. C. (1990) Isotopic characteristics of Hannuoba basalts, eastern China: implications for their petrogenesis and the composition of subcontinental mantle. Chem. Geol. 88:35–52.
Stern, C. R., Kilian, R., Olker, B., Hauri, E. H. and Kyser, T. K. (1999). Evidence from mantle xenoliths for relatively thin (5100 km) continental lithosphere below the Phanerozoic crust of southernmost South America. Lithos 48, 217-235.
Streckeisen, A. (1977) Classfication and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitics rocks. Geology 7, no. 7, 331-335.
Sun, S. S. and Hanson, G. N. (1975) Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle soure for alkali basalts and nephewlinites. Contrib. Mineral. Petrol 53, 77-106.
Sun, M. and Kerrich, R. (1995) Rare earth element and high field strength element characteristics of whole rocks and mineral separates of ultramafic nodules in Cenozoic volcanic vents of southeastern British Columbia, Canada. Geochim. Cosmochim. Acta 59, 4863-4879.
Sun, S. S. and McDonough, W. F.(1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. J. Geol. Soc. London Spec. Pub. 42,313-345.
Tetsu, K. Marc, M. H. and Peter W. R. (2004) Length scales of mantle heterogeneityies and their relationship to ocean island basalt geochemistry. Geochim. Cosmochim. Acta 68, 345-360.
Tatsumoto, M., Basu, A. R., Huang, W. K., Wang, J. W. and Xie, G. H. (1992) Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EM1 and EM2 in subcontinental lithosphere. Earth Planet. Sci. Lett. 113:107–128.
Wallace, M. E. and Green, D. H. (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for the solidus positions and mantle metasomatism. Mineralogy and Petrology 44, 1-19.
Wang, H. (1985) Atlas of the paleogeography of China. Beijing, Catographic, 281p. (In Chinese.)
Wang, X. M., Liou, J. G. and Mao, H. K. (1989) Coecite bearing eclogite from the Dabie Mountains in central China. Geology 17:1085–1088.
Wang, E., Burchfiel, B.C., Royden, L.H., Chen, L., Chen, J. and Li, W. (1998) Late Cenozoic Xianshuihe-Xiaojiang and Red River fault systems of southwestern Sichuan and central Yunnan, China: GSA Special Paper 327, 108 p.
Weaver, B. L. (1991) The origin of oceanic island basalt endmember. Compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397.
Wendlandt, R. F. and Harrrison, W. J. (1979) Contrib. Mineral. Petrol. 69, 409-419.
Wilkinson, J. F. G. and Le Maitre, R. W. (1987) Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100Mg/(Mg+Fe+2) ratios of common basalts and andesites: implications for modal mantle metasomatism and undepleted mantle compositions. J. Petrol. 28, 37-73.
Wilshire, H. G. and Shervais, J. W. (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States. Phys. Chem. Earth 9, 257-272.
Wilson, M. and Downes, H. (1991) Tertiary-Quaternary extension-related alkali magmatism in western and central Europe. J. Petrol. 32, 811-849.
Wood B. J. and Banno S. (1973) Garnet-orthopyroxene and orthopyroxene- clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol. 42, 109–124.
Wood, J. B. (1974) The solubility of alumina in orthopyroxene coexisting with garnet. Comtrib. Mineral. Petrol. 46, 1-15.
Wood, D. A., Joron, J. L. and Treuil, M. (1979) A re-apprisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic setting. Earth Planet. Sci. Lett. 45, 326-336.
Wu, L., Zhai, M., Zheng, X., Yang, R. and Huang, Z. (1985) Cenozoic volcanic rocks in eastern China. Acta Petrologica Sinica 1, 1-23 (in Chinese).
Wyllie, P. J. (1981) Plate tectonics and magma genesis. Geol. Rundsch., 70, 128-153.
Xu, J. W. (1993) The Tangcheng-Lujiang Wrench Fault System. Wiley New York, 279p.
Xu, J. W., Zhu, G., Tong, W., Cui, K. and Liu, Q. (1987) Formation and evolution of the Tangcheng-Lujiang wrench fault system: a major shear system to the northeast of the Pacific Ocean. Tectonophysics 134, 273-310.
Xu, S. T., Okay, A. I., Ji, S. Y., Sengör, A. M. C., Su, W., Liou, Y. C. and Jiang, L. L. (1992) Diamond from Dabie Shan eclogite and its implication for tectonic setting. Science 256:80–82.
Xu, X., O’Reilly, S. Y., Zhou,X. and Griffin, W. L. (1998) The nature of the Cenozoic lithosphere at Nushan, eastern China.In Flower, M. F. J., Chung, S. L., Lo, C. H., and Lee, T. Y., eds. Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union Geodyn. Ser. 27: 167-195.
Xu, X. S., O''Reilly, S. Y., Griffin, W. L. and Zhou, X. M. (2000) Genesis of young lithospheric mantle in the southeastern China: a LAM-ICPMS trace element study. J. Petrol. 41, 111-148.
Xu, Y. G. (2001). Thermo-tectonic destruction of the Archaean lithospheric keel beneath eastern China: evidence, timing and mechanism. Physics and Chemistry of the Earth (A) 26, 747-757.
Xu, Y. G., Mercier, J.-C. and Lin, C. Y. (1997) Amphibole-bearing peridotite xenoliths from Nushan, Anhui Province: evidence for melt percolation process in the upper mantle and lithospheric uplift. Chinese Journal of Geochemistry 16, 213-229.
Xu, Y. G., Menzies, M. A., Vroon, P., Mercier, J. C. C. & Lin, C. Y. (1998). Texture-temperature-geochemistry relationship in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. J. Petrol. 39, 469-493.
Xu, Y. G., Menzies, M. A., Thirlwall, M. F., Huang, X. L., Liu, Y. and Chen, X. M. (2003) “Reactive” harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochim. Cosmochim. Acta 67, 487-505.
Xu Y. G. and Bodinier J.-L. (2004) Contrasting enrichments in high and low temperature xenoliths from Nushan, Eastern China: Results of a single metasomatic event during lithospheric accretion? J. Petrol. 45, 321-341.
Xu Y. G., Chung S. L., Ma J. and Shi L. (2004) Contrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino-Korean craton: constraints from geochemistry of basalts and mantle xenoliths. J. Geol. 112, 593-605.
Yang, S. and Yang, W.(1985) Geotectonic of China. Geology Publishing House,Beijing.310p.
Yaxley, G. M., Crawford, A. J. and Green, D. H. (1991) Evidence for carbonatite metasomatism in spinel peridotite xenolith from Western Victoria. Earth Planet. Sci. Letters. 107, 305-317.
Yin, A. and Nie, S. Y.(1993) an indentation model for the North and South China collision and the development of the Tan-lu and Honam fault systems, eastern Asia. Tectonics 12, 801-813.
Yoder,H. S. and Tilley, C. E.(1962) Origin of basalt magmas: an experimental study of natural and synthetic rock system. J. Petrol. 3, 346-532.
York, D., Yanase, Y. and Berger, G. W. (1971) Determination of geological time with a nuclear reactor and a mass spectrometer. In: Brunfelt A. O. and Steinnes E. (eds.), Activation Analysis in Geochemistry and Cosmochemistry, Universitestsforlaget, Oslo, 419-422.
Yu, J. H., Xu, X. S., O’Reilly, S. Y., Griffin, W. L. and Zhang, M. (2003) Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos. 67, 77–102.
Zhai M. G., Guo J. H., Yan Y. H., Li Y. G., Li J. H. and Zhang W. H. (1996) An Oblique cross section of Archaean continental crust in Shanxi-Hebei-Nei Mongol juncture area, North China Craton. Acta Petrol. Sin. 12, 222–238. (in Chinese with English abstract).
Zhang, M., Suddaby,P., Thompson,R. N., Thirlwall,M. F. and Menzies, M. A. (1995) Potassic volcanic rocks in NE China: Geochemical constrains on mantle source and magma genesis, J. Petrol., 36, 1275-1303.
Zhang, M., Tu, K., Xie, G. and Flower, M.F.J. (1996) Subduction- modified subcontinental mantle in south China: Trace element and isotope evidence in basalts from Hainan Island. Chinese J. Geochem. 15, 1-19.
Zhang, K. J. (2000) Trace element and isotope characteristics of Cenozoic. basalts around the Tanlu fault with implications for the eastern plate boundary between North and South China: An extended discussion. J. Geol. 108, 739–742.
Zhang, X., Cawood, P.A., Wilde, S.A., Liu, R., Song, H., Li, W. and Snee, L.W. (2003) Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Miner. Depos. 38, 141– 153.
Zhao D. (2001) Seismic structure and origin of hotspots and mantle plumes. Earth Planet. Sci. Lett. 192, 251–265.
Zheng, Y. F., Wu, Y. B. Chen, F. K. Gong, B. Li, L. and Zhao, Z. F. (2004) Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 68, 4145-4165.
Zhi, X. C. and Chen, D. G. (1995) The inhomogeneous enriched type mantle source of Neogene basalts in east Anhui: Sr-Nd isotope evidence. Geol. Anhui 5, 13-20.(In Chinese.)
Zhi, X. C., Reisberg, L., Wagner, C., Peng, Z. C. and Xu, X. S. (2002). Longevity and multistage evolution of subcontinental lithospheric mantle beneath eastern China: evidence from Re-Os isotope geochemistry of mantle peridotite xenoliths from Jiangsu and Anhui Provinces, China. Geochim. Cosmochim. Acta 66(15A), A876.
Zhi, X. C., Song, Y., Frey, F. A., Feng, J. and Zhai, M. (1990) Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkali and tholeiitic basalts. Chem. Geol. 88:1–33.
Zindler, A., and Hart, S. R. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14:493–571.
Zhou, X. M., Yu, J. H., and Xu, X. S. (1992) Discovery and significance of granulite xenoliths in the Nushan basalt, East China. Chi. Sci. Bull. 37, 1730–1734.
Zhou, X.H., Sun, M., Zhang, G. and Chen, S. (2002) Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean Craton. Lithos 62, 111– 124.
Zou, H. (1998) Trace element fractionation during modal and nonmodal dynamic melting and open-system melting: a mathematical treatment. Geochim. Cosmochim. Acta 62, 1937–1945.
Zou, H., Zindler, A., Xu, X. and Qi, Q. (2000) Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chem. Geol. 171, 33-47.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊