(18.232.55.103) 您好!臺灣時間:2021/04/23 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭育安
研究生(外文):Yu -An Kuo
論文名稱:台灣北部陽明山地區青山瀑布呈層安山岩之地球化學特性
指導教授:陳汝勤陳汝勤引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:84
中文關鍵詞:安山岩混染大屯火山群熔岩流青山瀑布呈層安山岩層理結晶分化混染結晶分化
外文關鍵詞:andesitecontaminationTatun volcano grouplavafractional crystallizationAFC model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本文探討北部陽明山地區青山瀑布安山岩流因不均質所產生的呈層構造,呈層構造垂直地表,其岩性與整體安山熔岩流均為二輝安山岩,與火山碎屑岩不整合接觸。呈層狀構造厚約數公分到十數公分,側向延伸可達十數公尺。呈層安山岩體較塊狀安山岩體有較弱的抗侵蝕能力,岩石的顏色也較塊狀安山岩為深。呈層安山岩主要組成礦物包含直輝石,斜長石,正長石,不透光礦物及石基。由岩石薄片觀察,呈層安山岩含較多玻璃質石基與較多的直輝石分布。
由主要元素,微量元素,稀土元素之分析結果顯示呈層安山岩體具較高的不共容元素(La,Ce,Cs,Rb,Ta,Th與Nb)元素含量且有較大的變異度,而塊狀安山岩則無不共容元素之富集其元素含量變異度亦較小。
呈層安山岩之Ba/Nb在呈層安山岩中平均為74.9,比大陸地殼平均值(54)高。
As在呈層安山岩中有高達7.4ppm,顯示呈層安山岩極有可能受到沉積物的混染,亦即此岩石可能為開放性系統(open system)中形成,因此不能純粹使用結晶分化來解釋其化學特性。
在Th對Sc作圖中以混染與結晶分化過程(AFC process)加以模擬
可以得知呈層安山岩漿可由塊狀安山岩經由小比例的沉積物混染作用與結晶分化作用形成,淺部的沉積物可以局部性地影響岩石的外觀與顏色亦可影響其主要元素與微量元素的分布。
目錄
圖目b
表目c
照片目錄d
摘要e

第一章 緒論
1.1 前言1
1.2. 研究目的2
1.3.地質概論 2
第二章 研究方法與岩象學
2.1. 標本採集 7
2.2. 岩象分析 8
2.3. 分析方法
2.3.1 岩石標本酸熔過程 25
2.3.2岩石標本融解法(Fusion Method) 26
2.3.3 主要元素分析 27
2.3.4 感應偶合電漿質譜儀分析27
2.3.5分析精密度 30

第三章 地球化學特性
3.1. 主要元素分布特性 32
3.2. 微量元素分布特性 42
3.3. 蛛網圖分析 56

第四章 討論與結論
4.1. 討論 60
4.2. 結論 79

誌謝81
參考文獻 82
參考文獻
中文部分

黃少薇(2004)台灣清水與馬槽地區熱水蝕變岩之微量元素與稀土元素之分部與地質意義。國立台灣大學海洋研究所碩士論文,第17-23頁。
莊文星與陳汝勤(1989a)台灣北部之定年與地球化學研究: 經濟部地質調查所彙刊,第五號,第31-66頁。
張儀盛與唐宏怡(1988)感應偶合電漿直譜儀。科儀新知,第十卷,第3期,81-90頁。
英文部分

Chen, C-H. (1975) Potrological and chemical study of volcanic rocks from Tatun Volcano group. Proc. Geol. Soc. China 21, 80-91.
DePaolo D.J. (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett. 53, 189-202..
Drake M.J. and Holloway J.R. (1981) Partitioning of Ni between olivine and silicate melt: the ‘Henry’s Law problem reexamined. Geochim. Cosmochim. Acta 45, 431-437.
Gill J.B. ( 1981) Orogenic Andesites and Plate Tectonics. Springer, Berlin.
Green and Pearson N.J. (1985) Effect of pressure on rare earth element partition coefficients between amphibole and basaltic liquids at high pressure. Geochim, Cosmochim. Acta 49, 1465-1468.
Gromet L.P., Dymek R.F., Haskin L.A. and Koroter R.L. (1984). The north American shale composite: its compliation, major and trace elements characteristics. Geochim. Cosmochim. Acta 48, 2469-2482.
Grovindaraju, K.(1989) Special issue of geostandards. Geostand. Newslett. 7, 113 p.

Hall Anthony, (1996) Igneous Petrology. Longman, 262-265 p.
Juang, W.S. (1981) Analysis of international rock standards by atomic absorption spectroscopy. Proc. Geol. Soc. China 27, 86-100.
McBirney, A.R., Baker, B.H. and Nilson, R.H. (1985) Liquid fractionation .Part I: Basic principle and experimental simulations. J. Vol. Geother. Res. 24, 1-24.
McKenzie, D. (1985). The generation and compaction of partial molten rock. J. Petrol 25, 713-65.
Leeman, W. P. and Norman, M. D. (1990) Open-system magmatic evolution of andesites and basalts from the Salmon Creek Volcanics, southwestern Idaho, U.S.A. Chem. Geol. 3, 185-186.
O’Hara M.J. and Mathews R.E. (1981) Geochemical exolution in an advancing periodically replenished, periodically tapped, continuously fractionated magma chamber. Proc. Geol. Soc. Lond. 138, 257-277.
O’Hara, M.J. (1980) Nonlinear nature of the unavoidable long-lived isotopic, trace and major element contamination of a developing magma chamber. Phil.Trans.Roy.Soc.Lond. 297, 215-237.
Pearce J.A. and Norry.M.J (1979) Petrogenetic implications of Ti. Zr, Y and Nb variations in volcanic rock. Contrib. Mineral. Petrol. 69, 33-47.
Philpotts J.A. and Schnetzler C.C. (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba with applications to anorthosite and basalt genesis. Geochim. Cosmochim. Acta, 34, 307-322.
Powell R. (1984) Inversion of assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites. Proc. Geol. Soc. Lond 141, 447-452.
Rollinson, H.R.(1998) Using geochemical data, evaluation, presentation and interpretation. Longman, 352 p.
Rose, W. I., Anderson, A.T., Woodruff, L. G. and Bonis, S. B. (1978). The October 1977 basaltic tephra from Fuego volcano: description and history of the magma body. J. Vol. Geother. Res. 4, 3-53.
Saunders A.D., Norry M.J. and Tarney J. (1988) Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J..Petrol., Special Lithosphere Issue, 415-445.
Shaprio, L. and Brannock, W.W. (1962) Rapid analysis of silicate, carbonate and phosphate rocks. U. S. Geol. Surv. Bull. 1144A, 56p.
Spera, F. J. and Bohrson, W. A. (2002) Energy-constrained open-system magmatic processes; 3, Energy-constrained recharge, assimilation, and fractional crystallization (EC-RAFC).Geochem., Geophys,, Geosyst, 3, 7-9.
Sun S.S. and McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunder A.D. and Norry M.J. (eds), Magmatism in ocean basins. Geol., Soc. London. Spec. Publ. 42, 313-345..
Tsai, Y.B., Teng, T.L., Chiu, J.M. and Liu, H.L. (1977). Tectonic implication of the seismicity in the Taiwan region:Mem. Geol. Soc. China, 13-24.
Watson E.B. (1976) Two-liquid partition coefficients: experimental data and geochemical implications. Contrib. Mineral. Petrol., 56, 119-134.
Yoshiaki, I.., (1995) Magma chamber and eruptive processes at Izu-Oshima volcano, Japan: buoyancy control of magma migration J. Vol. Geother. Res. 66, 53-67.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔