(3.238.249.17) 您好!臺灣時間:2021/04/13 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李馥吟
研究生(外文):Fu-Yin Lee
論文名稱:NASDAQ新低投機型個股之日內報酬-買賣單不對稱關係
論文名稱(外文):Intraday Return-Order Imbalance Relation in NASDAQ Speculative New Lows
指導教授:蘇永成蘇永成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:58
中文關鍵詞:價量關係買賣單不對稱資訊不對稱
外文關鍵詞:information asymmetryprice-volume relationorder imbalance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
依據之前的研究,我們知道日買賣單不對稱對股價報酬率有顯著的解釋能力。然而我們認為,日內買賣單不對稱對於股價報酬率應有更好的解釋效果,因為日內資料所帶來的應是最新的市場資訊,對於股價報酬率的影響力應該較過去的日買賣單不對稱更強。因此於本研究中,我們採用日內資料做為樣本。

利用GARCH(1,1)、與時間序列複迴歸模型,我們發現在日內買賣單不對稱與股價報酬率間,確實存在著同期效果,亦即同期之日內買賣單不對稱對於股價報酬率有良好的解釋能力。然而,我們卻無法於其中發現預測能力,亦即前一期之日內買賣單不對稱對於當期股價報酬率並無顯著之預測能力,此結果與我們的預期不相符合。

最後,我們建構一簡單迴歸模型來偵測小型股效果。迴歸結果顯示,資本額愈小的公司,其同期日內買賣單不對稱對於股價報酬率的影響力愈大,表示確實存在著小型股效果。
By former researches we learn that daily order imbalance has significant explanatory power to daily return. And we think that intraday order imbalance is more useful information to investors because it may contain the latest market information and will have greater influence to stock price than those of previous transaction days. Thus we adopt intraday data in our research, to investigate the relation between intraday return and order imbalance.

In this research we try to see if intraday order imbalance has explanatory power to return. By using dynamic time and sale data in GARCH(1,1) model and by 90-second data in time-series regression models, we find out that there is significant contemporaneous effect, that is, the contemporaneous order imbalance has explanatory power to return, both in dynamic and 90-second time and sale data. On the other hand, we do not see significant predictability in lag-one period order imbalance to return, that is, the lag-one period order imbalance does not show predictability to contemporaneous return.

At last, we build a cross-sectional regression model to test the small-firm effect. We found out that there is small-firm effect. It means that the smaller the firm’s capital expenditure, the greater the influence of order imbalance to its stock return.
Chapter 1 Introduction 1
1.1 Motives and Purposes 1
1.2 Framework of the Thesis 4
Chapter 2 Literature Review 5
2.1 Information Asymmetry 5
2.2 Price-Volume Relation 7
Chapter 3 Data 11
3.1 Data Sample and Sources 11
3.2 Descriptive Statistics 13
Chapter 4 Methodology 15
4.1 Dynamic Return-Order Imbalance Relationship 15
4.2 Contemporaneous Effect and Predictability 17
4.3 Size Effect 18
Chapter 5 Empirical Results 20
5.1 Dynamic Return-Order Imbalance Relationship 20
5.2 90-Second Return-Order Imbalance Relationship 21
5.2.1 Contemporaneous Effect 21
5.2.2 Lag-One Period Effect - Predictability 23
5.3 Size Effect 24
Chapter 6 Conclusion 26
References 55
1.Admati, A. and P. Pfleiderer, 1988, “A Theory of Intraday Patterns: Volume and Price Variability,” Review of Financial Studies, 1, 3-40.
2.Back, K., C. H. Cao, and G. A. Williard, 2000, “Imperfect Competition among Informed Traders,” Journal of Finance, 55, 2117-2155.
3.Barclay, M. and J. Warner, 1993, “Stealth Trading and Volatility,” Journal of Financial Economics, 34, 281-305.
4.Barclay, M. J., T. Hendershott and D. T. Mccormick, 2003, “Competition Among Trading Venues: Information and Trading on Electronic Communications Networks,” Journal of Finance 58, 2637-2666.
5.Bollerslev, T., 1986, “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 31, 307-327.
6.Booth, G. G., J. C. Lin, T. Martikainen, and Y. Tse, 2002, “Trading and Pricing in Upstairs and Downstairs Stock Markets,” Review of Financial Studies, 15, 1111-1135.
7.Campbell, J. Y., S. J. Grossman, and J. Wang, 1993, “Trading Volume and Serial Correlation in Stock Returns,” Quarterly Journal of Economics, 108, 905-939.
8.Chakravarty, S., 2001, “Stealth-trading: Which Traders’ Trades Move Stock Prices?” Journal of Financial Economics, 61, 289-307.
9.Chan, K. and W. Fong, 2000, “Trade Size, Order Imbalance, and the Volatility-Volume Relation,” Journal of Financial Economics, 57, 247-273.
10.Chordia, T., and B. Swaminathan, 2000, “Trading Volume and Cross-Autocorrelations in Stock Returns,” Journal of Finance, 55, 913-935.
11.Chordia, T., R. Roll, and A. Subrahmanyam, 2002, “Order Imbalance, Liquidity, and Market Returns,” Journal of Financial Economics, 65, 111-130.
12.Chordia, T. and A. Subrahmanyam, 2004, “Order Imbalance and Individual Stock Returns: theory and evidence,” Journal of Financial Economics, 72, 485-518.
13.Copeland, T. E., 1976, “A model of Asset Trading under the Assumption of Sequential Information Arrival,” Journal of Finance, 31, 1149-1168.
14.F. A. Wang, 1998, “Strategic Trading, Asymmetric Information and Heterogeneous Prior Beliefs,” Journal of Financial Markets, 1,321-352.
15.Foster, D. F. and S. Viswanathan, 1993, “The Effect of Public Information and Competition on Trading Volume and Price Volatility,” The Review of Financial Studies, 6, 23-56.
16.Foster, D. F. and S. Viswanathan, 1994, “Strategic Trading with Asymmetric Informed Traders and Long-Lived Information,” Journal of Financial and Quantitative Analysis, 29, 499-518.
17.Foster, D. F. and S. Viswanathan, 1996, “Strategic Trading When Agents Forecast the Forecasts of Others,” Journal of Finance, 51, 1437-1478.
18.French, K. R., G. W. Schwert, and R. F. Stambaugh, 1987, “Expected Stock Returns and Volatility,” Journal of Financial Economics, 19, 3-29.
19.Gallant, R., P. Rossi, and G. Tauchen, 1992, “Stock Prices and Volume,” Review of Financial Studies, 5, 199-242.
20.Grossman, S., 1976, “On the Efficiency of Competitive Stock Markets Where Traders Have Diverse Information,” Journal of Finance, 31, 573-585.
21.Hasbrouck, J., 1991, “Measuring the Information Content of Stock Trades,” Journal of Finance, 46, 179-207.
22.He, H., and J. Wang, 1995, “Differential Information and Dynamic Behavior of Trading Volume,” Review of Financial Studies, 8, 919-972.
23.Heflin, F., and K. W. Shaw, 2000 “Trade Size and the Adverse Selection Component of the Spread: Which Trades Are "Big"?”
24.Holden, C. W., and A. Subrahmanyam, “Long-Lived Private Information and Imperfect Competition,” Journal of Finance, 47, 247-270.
25.Hong, H., and J. Wang, 2000, “Trading and Returns under Periodic Market Closures,” Journal of Finance, 55, 297-354.
26.Jones, C., G. Kaul, and M. Lipson, 1994, “Transactions, Volume and Volatility,” Review of Financial Studies, 7, 631-652.
27.Karpoff, J., 1986, “A Theory of Trading Volume,” Journal of Finance, 41, 1069-1087.
28.Karpoff, J., 1987, “The Relation between Price Changes and Trading Volume: A Survey,” Journal of Financial and Quantitative Analysis, 22, 109-126.
29.Kyle, A., 1985, “Continuous Auctions and Insider Trading,” Econometrica, 53, 1315-1335.
30.Lamoureux, C., and W. Lastrapes, 1990, “Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects,” Journal of Finance, 45, 221-229.
31.Lee, C. M C., and M. J. Ready, 1991, “Inferring Trade Direction from Intraday Data,” Journal of Finance, 46, 733-746.
32.Lee, Y. T., Y.J. Liu, R. Roll and A. Subrahmanyam, 2003, “Order Imbalances and Market Efficiency: Evidence from the Taiwan Stock Exchange,” Journal of Financial and Quantitative Analysis, 20 01
33.Lin, C. M., 2003, “Information Asymmetry and Return-Volume Relation: A Time Varying Model based upon Order Imbalance and Individual Stock,” Graduate Institute of Finance of National Taiwan University.
34.Lin, J. C., 2004, “Price-Volume Relation - A Time Varying Model with Censored and Camouflage Effects,” Graduate Institute of Finance of National Taiwan University.
35.Lin, J. C., G. C. Sanger, and G. G. Booth, 1995, “Trade Size and Components of the Bid-Ask Spread,” Review of Financial Studies, 8, 1153-1183.
36.Llorente, G., R. Michaely, G. Saar, and J. Wang, 2002, “Dynamic Volume-Return Relation of Individual Stocks,” Review of Financial Studies, 15, 1005-1047.
37.Lo, A. and J. Wang, 2000, “Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory,” Review of Financial Studies, 13, 257-300.
38.Lo, A. W., and A. C. MacKinlay, 1988, “Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test,” Review of Financial Studies, 1, 41-66.
39.Morse, D., 1980, “Asymmetric Information in Securities Markets and Trading Volume,” Journal of Financial and Quantitative Analysis, 15, 1129-1148.
40.Wang, J., 1993, “A Model of Intertemporal Asset Prices Under Asymmetric Information,” Review of Economic Studies, 60, 249-282.
41.Wang, J., 1994, “A Model of Competitive Stock Trading Volume,” Journal of Political Economy, 102, 127-168.
42.Woodruff, C. S., and A. J. Senchack Jr., 1988, “Intraday Price-Volume Adjustments of NYSE Stocks to Unexpected Earnings,” Journal of Finance, 43, 467-491.
43.Yu, Y. H., 2002, “Information Asymmetry and Price-Volume Relations,” Graduate Institute of Business Administration of National Taiwan University.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔