跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝官霖
研究生(外文):Kuan-Lin Hsieh
論文名稱:交聯型電洞、電子傳導層和聚芴高分子的合成及其在高分子發光元件上的應用
論文名稱(外文):Synthesis of Crosslinkable Polyfluorenes, Hole- transporting and Electro-transporting Molecules and Their Applications on the PLED Devices
指導教授:林金福林金福引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:117
中文關鍵詞:聚芴環氧丙基
外文關鍵詞:polyfluoreneoxetane
相關次數:
  • 被引用被引用:1
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功合成出帶有oxetane官能基的oxadiazole (Oxa-oxe)和 triazole (Tri-oxe) 電子傳導分子、 triphenylamine (Tpa-Oxe) 電洞傳導分子及polyfluorene (P2)發光層材料,並且用H1-NMR, C13-NMR, IR, Mass 和 EA等儀器鑑定合成的結果。從Dsc圖譜得知,在Polyfluorene側鏈位置導入oxetane破壞了原本的結晶性,交聯過後P2的 Tg 比未交聯者高了十度。從交聯後溶解度測試得知,只有P2和Tpa-Oxe的薄膜可以交聯,而Oxa-Oxe,和Tri-Oxe電子傳導分子則無法交聯。根據CV量測所得的能階圖得知,Tpa-Oxe是一個好的電洞注入材料; Tri-Oxe 為一個好的擋電洞材料而Oxe-Oxe除了是一個好的電子注入材料同時也是一個好的擋電洞材料。初步測試,本實驗所製作的元件亮度介在58~330 Cd/m2之間而效率值介在0.05~2.69 Cd/A之間。利用將發光層交聯的方式作為元件,可以增加載子注入在發光層之後的穩定性,得到較多的激子及較高的光通量。從EL的圖譜得知,利用交聯過後的P2為發光材料,可以避免高分子鏈之間靠得太近而產生g 帶,即可得到較純的光色。
In this research work, we have successfully synthesized the carrier-transporting materials containing the oxetane crosslinkable groups such as oxdiazole (Oxa-oxe), triazole (Tri-oxe) and triphenylamine (Tpa-oxe), and polyfluorene light emitting material containing the oxetane crosslinkable group (P2). From DSC results, we can clearly observe that the crystallinity of polyfluorene was reduced by incorporating the oxetane group into the side chain of polyfluorene, and the Tg of the Polyfluorene was increased from 25℃ to 35℃ after crosslinking. We also found that only the films of Tpa-Oxe and P2 can be crosslinked with the initiator of triarylsulfonium hexafluorophosphate, but the films of Tri-Oxe and Oxa-Oxe can’t. Based on the CV results, the hole injection properties of Tpa-Oxe materials was not significantly changed after crosslinking. Preliminary results also showed that the brightness of all the fabricated PLED devices was in a range of 58~330 Cd/m2 with the efficiency of 0.05~2.69 Cd/A. Due to the fact that Crosslinking can prevent the adjacent chain segments from quenching with each other and restrain the existence of the g band, it increase the number of excitons in P2 to emit light.
Contents
AbstractsⅠ
中文摘要Ⅱ
ContentsⅢ
List of Tables and SchemesⅧ
List of Figures Ⅸ
1. Introduction 1
1.1. Foreword1
1.2. Principle of Emission and Structure of MLED 4
1.3. Paper Review 11
1.3.1. Oxadiazole derivatives 12
1.3.2. Triazole derivatives 16
1.3.3. Triphenylamine derivatives 19
1.3.4. Crosslinkable in MLED 22
1.4. Current Situation of Development for Industry
regarding MLED26
1.5. Motivation of Experiments 30
2. Experimental Section 31
2.1. Chemicals and Instruments
2.1.1. Chemicals 31
2.1.2. Instruments 33
2.2. Synthesis
2.2.1. Synthesis of 2, 5-bis (4-(((3-methyloxetan-3-yl) methoxy)methyl) phenyl)-1,3,4-oxadiazole.(Oxa-Oxe)
(1). Synthesis of (3-methyloxetan- 3-yl)
methanol. (Oxe-OH) 36
(2). Synthesis of 2,5-dip-tolyl-1,3,4-
oxadiazole. (Oxa -CH3) 37
(3). Synthesis of 2,5-bis(4-(bromomethyl)
phenyl) -1,3,4 -oxadiazole. (Oxa-CH2Br) 37
(4). Synthesis of 2,5-bis(4-(((3-methyloxetan-3-
yl) methoxy)methyl)phenyl)-1,3,4-
oxadiazole.(Oxa-Ox-e)37

2.2.2. Synthesis of 3,5-bis(4-((3-methyloxetan-3-yl)methoxy) pheny- l)-4-phenyl-4H-1,2,4-triazole.(Tri-Oxe).

(1). Synthesis of 3-(bromomethyl)-3 -methyl oxetane .
(Oxe- Br) 39
(2). Synthesis of 4-(5-(4-hydroxyphenyl)-4-phenyl -4H-
1,2,4–triazol -3-yl )phenol.(Tri-OH) 40
(3). Synthesis of 3,5-bis(4-((3-methyloxetan-3-yl) methoxy)
phenyl)-4-phenyl-4H-1,2,4-triazole. (Tri-Oxe) 40


2.2.3 Synthesis of N,N’-bis(4-(3-methyloxetan-3-yl)methoxy) phenyl)-N,N’ -diphenylbenzidine. (Tpa-Oxe).

(1). Synthesis of 3-((4-bromobenzyloxy)methyl)-3-methyl-
oxetane .(Br-Ben-Oxe) 42

(2). Synthesis of N,N’-bis(4-(3-methyloxetan-3-yl) metho-
xy)phenyl) -N,N’-diphenylbenzidine. (Tpa-Oxe) 42

2.2.4. Synthesis of Monomer

(1). Synthesis of 2,5-dibromobenzene -1,4-diol. (Ben- OH)45
(2). Synthesis of 1,4-dibromo-2,5-bis(hexyloxy)
benzene- e.(Ben-Hex) 46
(3). Synthesis of 3-((6-bromohexyloxy)methyl) -
3-methyl oxetane.(Br-Hex-Oxe) 46
(4). Synthesis of 3-((6-(4-(6-((3-methyloxetan-
3-yl) methoxy)hexyloxy)-2,5-
dibromophenoxy) hexyl-oxy)methyl)-3-
methyloxetane.(Ben-Hex-Oxe)…47
(5). Synthesis of 2,7-Dibromofluorene (Br-Fluo)
47
(6). Synthesis of 2,7-Dibromo-9,9
dihexylfluorene (Hex-Fluo-Br) 48
(7). Synthesis of 2-(9,9-dihexyl-2-(4,4,5,5-
tetramethyl
-1,3,2-Dioxaborolan-2-yl)-9H-fl-uoren-7-
yl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolanev (Hex-Fluo-Boro) 48

2.2.5. Polymeriaztion 49

2.3. Characterization
2.3.1. NMR 50
2.3.2. FT-IR 50
2.3.3. EA 51
2.3.4. Mass51
2.3.5. GPC 51
2.3.6. Uv-vis51
2.3.7. PL 52
2.3.8. DSC 52
2.3.9. TGA 52
2.3.10 CV 52
2.3.11 I-V-L 53

2.4. Crosslink Procedure 54
2.4.1 Film state 54
2.4.2 Gelation test for P2 after crosslinking 54
2.5. Solvent resistibility test 54

3. Results and Discussion 56

3.1. Synthesis and Characterization 56
3.1.1. NMR
(1). Oxa-Oxe.58
(2). Tri-Oxe.59
(3). Tpa-Oxe.59
(4). Monomers and Polymers 60
3.1.2. IR
(1). Oxa-Oxe 62
(2). Tri-Oxe 62
(3). Tpa-Oxe 63
(4). Polymers 63
3.1.3. Mass 64
3.1.4. EA 64
3.1.5 Molecule Weight of P1 and P2 65

3.2. Spectroscopic Properties 65
3.3. Solvent resistibility test 67
3.4. Analysis of thermal property 68
3.4.1. TGA 69
3.4.2. DSC 69
3.5 Cyclic Voltammetry 70
3.6 EL and I-V-L 71
3.6.1 I-V-L 71
3.6.2 EL 73

4. Conclusions 75
5. References 113

List of Tables and Schemes

Table.1 Advantages and disadvantages of all kind of flat-
panel displays 1
Table.2 Advantages, disadvantages, and appropriate field
for PLED or OLED 5
Table.3 The common materials for the electrode or emitting
materials 6
Table.4 Companies which did the research regarding MLED 28
Table.5 Element Analysis of compounds 64
Table.6 Molecule weight of P1 and P2 65
Table.7 Configurations of the devices 72
Table.8 Configurations of the devices (including EIL) 72
Table.9 Performance of the device 73
Scheme 1 Synthesis of Oxa-Oxe 36
Scheme 2 Synthesis of Tri-Oxe 39
Scheme 3 Synthesis of Tpa-Oxe 42
Scheme 4 Synthesis of Monomers (Ⅰ) 44
Scheme 5 Synthesis of Monomers (Ⅱ) 45
Scheme 6 Synthesis of Polymers 49

List of Figures

Fig.1 Configurations of MLED and LCD 3
Fig.2 Comparison of LCD and MLED 3
Fig.3 Basic configuration of MLED 4
Fig.4 Multi-layer device (ETL or EIL) 6
Fig.5 Multi-layer device (HTL or HIL) 6
Fig.6 Multi-layer device (HTL or HIL and ETL or EIL) 7
Fig.7 Energy state for single layer MLED (zero bias) 8
Fig.8 Energy state for single layer MLED (Forward Bias=Turn
on voltage) 8
Fig.9 Energy state for single layer MLED (Forward Bias>Turn
on voltage) 9
Fig.10 Energy state of Negative Polaron 9
Fig.11 Energy state of Positive Polaron 10
Fig.12 Energy state of Exciton 10
Fig.13 (a) oxadiazole polymer 1 (b) oxadiazole polymer 2
Fig.14 PPV containing pedant oxadiazole group 13
Fig.15 PPV containing electron-withdrawing groups 14
Fig.16 non-all conjugated polymer 15
Fig.17 PF-OXD 15
Fig.18 PPV-Derivatives 16
Fig.19 polymers containing electro-withdrawing groups 17
Fig.20 TRIDSB 18
Fig.21 PPV-containing triazole group 18
Fig.22 TAZ-MEH-PPV, TAZ-DBE-PPV 19
Fig.23 PPV containg triazole groups 19
Fig.24 Triarylamine-containing polyperfluorocycolbutanes 20
Fig.25 PTPAF 21
Fig.26 TPD-Si2 21
Fig.27 V-L Curve 21
Fig.28 triarylamine containing PFO-OXD polymer 22
Fig.29 Crosslink polymer 22
Fig.30 TPA-SIO3 24
Fig.31 crosslinked polymer 24
Fig.32 X-HTPA 25
Fig.33 Merchandises made by MLED (1) 27
Fig.34 Merchandises made by MLED (2) 28
Fig.35 Diagram of the device 53
Fig.36 H1-NMR of Oxe-OH 77
Fig.37 H1-NMR of Oxa-CH3 77
Fig.38 H1-NMR of Oxa-CH2Br 78
Fig.39 H1-NMR of Oxa-Oxe 78
Fig.40 C13-NMR of Oxa-Oxe 79
Fig.41 H1-NMR of Oxe-Br 79
Fig.42 H1-NMR of Tri-OH 80
Fig.43 H1-NMR of Tri-Oxe 80
Fig.44 H1-NMR of Br-Ben-Oxe 81
Fig.45 C13-NMR of Br-Ben-Oxe 81
Fig.46 H1-NMR of Tpa-Oxe 82
Fig.47 H1-NMR of Ben-OH 82

Fig.48 H1-NMR of Oxe-C6Br 83
Fig.49 H1-NMR of Ben-Hex 83
Fig.50 H1-NMR of Ben-Hex-Oxe 84
Fig.51 H1-NMR of Br-Fluo 84
Fig.52 H1-NMR of Br-Fluo-Hex 85
Fig.53 H1-NMR of Hex-Fluo-Boro 85
Fig.54 H1-NMR of P1 86
Fig.55 H1-NMR of P2 86
Fig.56 IR spectrum of Oxa-CH3 87
Fig.57 IR spectrum of Oxa-CH2Br 87
Fig.58 IR spectrum of Oxa-Oxe 88
Fig.59 IR spectrum of Tri-OH 88
Fig.60 IR spectrum of Tri-Oxe 89
Fig.61 IR spectrum of Tpa-Oxe 89
Fig.62 IR spectrum of P1 90
Fig.63 IR spectrum of P2 90
Fig.64 IR spectrum of P2-C 91
Fig.65 Mass Characterization of Oxa-Oxe 91
Fig.66 Mass Characterization of Tri-Oxe 92
Fig.67 Mass Characterization of Tpa-Oxe 92
Fig.68 Uv-vis spectrum of solution state for Oxa-Oxe 93
Fig.69 Uv-vis spectrum of solution state for Tri-Oxe 93
Fig.70 Uv-vis spectrum of solution state for Tpa-Oxe 94
Fig.71 PL spectrum of solution state for Oxa-Oxe 94
Fig.72 PL spectrum of solution state for Tpa-Oxe 95
Fig.73 PL spectrum of solution state for Tri-Oxe 95
Fig.74 Uv-vis, PL spectrum of solution and film state for
Oxa-Oxe 96
Fig.75 Uv-vis, PL spectrum of solution and film state for
Tri-Oxe 96
Fig.76 Uv-vis, PL spectrum of solution and film state for
Tpa-Oxe 97
Fig.77 Uv-vis spectrum of solution state for initiator 97
Fig.78 Uv-vis, PL spectrum of solution and film state for
P1 98
Fig.79 Uv-vis, PL spectrum of solution and film state for
P2 98
Fig.80 Uv-vis spectrum of film state for Tpa-Oxe 99
Fig.81 Uv-vis spectrum of film state for P2 99
Fig.82 Uv-vis spectrum of film state for Tri-Oxe 100
Fig.83 Uv-vis spectrum of film state for Oxa-Oxe. 100
Fig.84 Solubility test for Tpa-Oxe 101
Fig.85 Solubility test for P2 101
Fig.86 TGA of P1 with a heating rate of 10℃/min 102
Fig.87 TGA of P2 with a heating rate of 10℃/min 102
Fig.88 TGA of P2-C with a heating rate of 10℃/min. 103
Fig.89 DSC of P1 with a heating rate of 10℃/min for the
second run.103
Fig.90 DSC of P2 (1) with a heating rate of 10℃/min for
the second run 104
Fig.91 DSC of P2 (2) with a heating rate of 10℃/min for
the second run 104
Fig.92 DSC of P2-C with a heating rate of 10℃/min for the
second run 105
Fig.93 CV of Ferrocene in 0.1 M N-Bu4NClO4 with Scan Rate
of 20 mv/s 105
Fig.94 CV of Oxa-Oxe in 0.1 M N-Bu4NClO4 with Scan Rate of
20 mv/s 106
Fig.95 CV of Tri-Oxe in 0.1 M N-Bu4NClO4 with Scan Rate of
20 mv/s 106
Fig.96 CV of Tpa-Oxe in 0.1 M N-Bu4NClO4 with Scan Rate of
20 mv/s 107
Fig.97 CV of P1 in 0.1 M N-Bu4NClO4 with Scan Rate of 20
mv/s 107
Fig.98 CV of P2 in 0.1 M N-Bu4NClO4 with Scan Rate of 20
mv/s 108
Fig.99 CV of Crosslinked Tpa-Oxe in 0.1 M N-Bu4NClO4 with
Scan Rate of 20 mv/s 108
Fig.100 CV of P2-C in 0.1 M N-Bu4NClO4 with Scan Rate of 20
mv/s 109
Fig.101 The relative energy diagram for these materials
with electrode 109
Fig.102 I-V of the deivces 110
Fig.103 V-L of the deivces 110
Fig.104 Efficiency of the deivces 111
Fig.105 EL of the devices 111
Fig.106 CIE Chromaticity Diagrams of the devices 112
References

1.顧鴻壽, 平面面板顯示器基本概論, 2nd, (高立圖書有限公司,民國九十三年).
2.城戶淳二, 有機EL ,1st, (世茂出版集團,民國九十三年六月).
3.Friend, R. H.; Gymer, R. W.; Holmes, A. B.;Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bre´das, J. L.; Lo¨gdlund, M.; Salaneck, W. R.; Nature, 1999, 397, 121.
4.D. Braun and A. J. Heeger, Appl. Phys. Lett.; 1991, 58, 1982.
5.M. Pope , H. Kallmann, P. Magnante, J. Chem. Phys.; 1963, 38, 2042.
6.C. W. Tang , S. A.Vanslyke, Appl. Phys. Lett.; 1987, 51, 913.
7.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bruns, and A. B. Holmes; Nature, 1990, 347, 539.
8.A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, A. Kraft; Appl. Phys. Lett., 1992, 61, 2793.
9.N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holms; Nature, 1993, 365, 628.
10.Q. Pei, Y. Yang; Adv. Mater., 1995, 6, 559.
11.S. J. Chung, K. Y. Kwon, S. W. Lee,J. I. Jin, C. H. Lee, C. E. Lee, Y. Park; Adv. Mater., 1998, 14, 1112.
12.Zhonghua Peng, Zhenan Bao, and Mary E. Galvin; Adv. Mater., 1998, 10, 680.
13.Bubin Xu, Yongchun Pan, Jianheng Zhang, Zhonghua Peng; Synthetic Metals, 2000, 114, 337.
14.Min Zheng, Liming Ding, E. Elif Gürel, Paul M. Lahti, and Frank E. Karasz; Macromolecules 2001, 34, 4124.
15.F. I. Wu, D. S. Reddy, C. F. Shu, M. S. Liu and Alex K-Y. Jen; Chem. Mater. 2003, 15, 269.
16.S. H. Jin, M. Y. Kim, J. Y. Kim, K. Lee, and Y. S. Gal; J. AM. CHEM. SOC. 2004, 126, 2474.
17.J. Kido, C. Ohtaki, K. Hogawa, K. Okuyama, K, Nagai; Jpn. J. Appl. Phys. 1993, 32, L917.
18.M. Strukelj, F. Papadimitrakopoulos, T. M. Miller, L. J. Rothberg ; Science. 1995, 267, 1969.
19.A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley; Adv. Mater., 1997, 9, 1174.
20.D. D. C. Bradely, M. Grell, A. Grice, A. R. Tabakhsh, D. F. O’Brien, A. Bleyer; Optical Materials, 1998, 9 ,1.
21.Z. Liu, Y. X. Cheng, G. P. Su, L. X. Wang, X. B. Jing, F. S. Wang, Synthetic Metals; 2003, 137, 1113.
22.L. S. Yu, S. A. Chen, Advanced Materials; 2004, 16, 744.
23.D. F. O''Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, M. E. Thompson; Advanced Materials, 1998, 10, 1108.
24.S. Liu, X. Jiang, H. Ma, M. S. Liu, Alex K.-Y. Jen, Macromolecules 2000 ; 33, 3514.
25.C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov, K. Müllen; Advanced Materials, 2002, 14, 809.
26.J. Cui, Q. Huang, J. G. C. Veinot, H. Yan, T. J. Marks; Advanced Materials, 2002, 14, 565.
27.H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern, T. J. Marks; Advanced Materials, 2003, 15, 835.
28.H. Yan, Q. Huang, B. J. Scott, T. J. Marks; Appl. Phys. Lett., 2004, 84, 3873.
29.C. F. Shu, R. Dodda, F. I. Wu, M. S. Liu and Alex K-Y. Jen; Macromolecules 2003, 36, 6698.
30.X. C. Li, T. M, J. Grüner, A. B. Holmes, S. C. Moratti, F. Cacialli, R. H. Friend ; Synthetic Metals, 1997, 84, 437.
31..W. Li, Q. Wang, J. Cui, H. Chou, S. E. Shaheen, G. E. Jabbour, J. Anderson, P. Lee, B. Kippelen, N. Peyghambarian, N. R. Armstrong, T. J. Marks; Advanced Materials, 1999, 11, 730.
32.G. Kla¨rner, J. I. Lee, V. Y. Lee, E. Chan, J. P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scott, R. D. Miller; Chem. Mater. 1999, 11, 1800.
33.M. S. Bayerl1, T. Braig1, O. Nuyken, D. C. Müller, M. Groß, K. Meerholz; Macromol. Rapid Commun.; 1999, 20, 224.
34.T. Braig, D. C. Müller, M. Groß, K. Meerholz, O. Nuyken; Macromol. Rapid Commun.; 2000, 21, 583.
35.L. D. Bozano, K. R. Carter, V. Y. Lee, R. D. Miller, R. DiPietro, J. C. Scott; JOURNAL OF APPLIED PHYSICS, 2003, 94, 3061.
36.C. D. Müller, Aure´lie Falcou, N. Reckefuss, M. Rojahn, Vale`rie Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz; Nature, 2003, 421, 829.
37.A. E. A. Contoret, S. R. Farrar, S. M. Khan, and M. O’Neilla, G. J. Richards, M. P. Aldred, S. M. Kelly; JOURNAL OF APPLIED PHYSICS, 2003, 93, 1465.
38.O. Nuyken, E. Bacher, T. Braig, R. Faber, F. Mielke, M. Rojahn, V. Wiederhirn, K. Meerholz, D. Müller, Des. Monom. Polym.; 2002, 5, 195.
39. D. B. Pattison; J. Am Chem. Soc., 1957, 79, 3455.
40. 施寬裕, “側鏈鐵電性液晶聚環氧丙烷之合成及性質研究”, 私立中原大學化學工程研究所碩士論文,民國90年。
41. 許榮賓, “含發光基及噁二唑基高分子的合成與光電性質探討”, 國立成功大學化學工程研究所碩士論文,民國91年。
42. Fouad Bentiss, Michel Lagrenée, Didier Barbry ; Synth. Commun., 2001, 31, 935.
43. Y. Zhang, Y. Hu, H. Li, L.Wang, X. Jing, F. Wang, D. Ma; J. Mater. Chem., 2003, 13, 773.
44. J. Dale, S. B. Fredriksen; Acta Chem. Scand., 1991, 45, 82.
45. J.W. Connell, P.M. Hergenrother, P.Wolf, Polymer, 1992, 33, 3507.
46. A. Fkyerat, G. M. Dublin, R. Tabacchi; Helv. Chim. Acta., 1999, 82, 1418.
47. A. Pelter, I. Jenkins, D. E. Jones ; Tetrahedron , 1997, 53, 10357.
48. H. Bock, S. Nick, C. Naether, J. W. Bats. ; J. Prakt. Chem.; 1996, 338, 363.
49. B. Liu, W. Lin Yu, Y. H. Lai, W. Huang;Chem. Mater. 2001, 13, 1984
50. M. Motoi, H. Suda. K. Shimamura. S. Nagahara, M. Takei, S. Kanoh ; Bull.Chem.Soc.Jpn.1988, 61, 1653.
51. W. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, A. J. Heeger; Advanced Materials, 2005, 17, 274.
52. 宋孝先,“含堮雙唑之新穎材料於液得與高分子發光二極體之應用”;國立交通大學材料工程研究所博士論文,民國94年。
53. E. Lim, B. J. Jung, H. K. Shim; Macromolecules 2003, 36, 4288.
54. David W. Price, Jr. and James M. Tour, Tetrahedron 2003, 59, 2003
55. 周嘉宏,“含有樹枝狀側鏈結構聚茀發光高分子的合成與研究”;國立交通大學材料工程研究所碩士論文,民國91年
56. Mariacecilia Pasini, Silvia Destri, William Porzio, Chiara Botta and
Umberto Giovanella, Journal of Materials Chemistry, 2003, 13, 807
57. M. T. Bernius. M. I nbasekaran, J. O’Brien, W.-S Wu, Adv. Mater. 2000, 12, 1737
58. Marc Sims, Donal D. C. Bradley, Marilu Ariu, Mattijs Koeberg, Aris
Asimakis, Martin Grell, D. G. Lidzey; Advanced Functional Materials 2004, 14, 765.
59. 白佳靈,“電子施體/受體共軛高分子系統之理論計算及特性應用”;國立台灣大學化學工程研究所碩士論文,民國94年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top