跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/25 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳詩凱
研究生(外文):Shih-Kai Chen
論文名稱:吸音材料受壓縮後之性能探討
論文名稱(外文):A Study of Compression effect on the Performance of Acoustical Materials
指導教授:王昭男王昭男引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:吸音材壓縮
外文關鍵詞:acoustic materialcompression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討吸音材料在受到壓縮作用後其吸音能力的改變情形,利用Biot彈性多孔材理論與彈性固體理論分別推導出在空氣中與水中其材料之波動方程,探討當材料受壓縮作用後其各參數之變化情形,考慮材料兩端速度與應力的連續條件,可建立聲波之轉換矩陣,進而求得材料吸音率與回聲衰減量。本文分別就空氣中與水中兩部份探討材料之吸音效能的變化情形。
空氣中的部份探討了多孔材受壓與否之吸音效能比較,亦嘗試以不同角度入射時其吸音能力的變化情形;而當吸音材料受壓縮作用後,整體之吸音曲線會往高頻處平移,其吸音效能比不受壓時略為降低。但若比較相同厚度的多孔材,材料受到壓縮作用會比材料無受壓之情形其吸音效果要佳。水下的部份則模擬材料承受水壓後,吸音效能因材料厚度、聲能損耗性質改變所造成的影響,導致於整體之吸音效能變差。
This work studies that the sound is muffled by the acoustic material which is compressed. For yielding the sound wave equation of the material in water or air, Biot theory and the sound propagation of the solid are used. Furthermore, the variation in the acoustic parameters is presented and discussed. By considering the boundary conditions, the continuous velocity and pressure on the both sides of the material, the sound transfer matrix can be build. Than the absorption coefficient and the echo reduction can be calculated. The two parts, the sound absorptions of the material in air and water are researched separately.
In the one part, the abilities of sound absorption of the compressed material in air are investigated. The influence of the different incident angles of sound wave are also discussed in the article. As the acoustical material is compressed, the characteristics (peak or tip) of curve of absorption coefficient shift to high frequency. The value of absorption coefficient becomes low. On the other side, as the both thicknesses of the compressed and the un-compressed porous materials are the same, the ability of absorption of compressed material is better than another un-compressed material.
In the other part, the work focuses on the acoustic studies in water. As the thickness of the material varies from the pressure of water, the influences on the abilities of sound absorption of the material are simulated. In water, the ability of absorption of material is bad because the pressure of water lead the property of the material to change.
第一章 序論 …………………………………... 1
1.1 前言 ……………………………………. 1
1.2 文獻回顧 ………………………………. 2
1.3 研究方法 ………………………………. 4
第二章 理論分析 ……………………………... 6
2.1多孔材吸音原理 ..................... 6
2.2剛性結構與彈性結構 ................. 7
2.3彈性固體之波傳理論 ................. 8
2.3.1 應力與應變之關係 ............ 8
2.3.2 彈性固體之運動方程式 ........ 9
2.3.3 彈性固體之波動方程式 ........ 11
2.4 彈性多孔材之應力應變 .............. 12
2.4.1 彈性多孔材應力應變關係 ...... 12
2.4.2 彈性係數P,Q,R,N ............ 13
2.4.3 流體為空氣時之簡化 .. . . 14
2.5 彈性多孔材料慣性偶合效應 ........... 15
2.5.1 Biot慣性理論 ................ 15
2.5.2慣性耦合項 ................... 17
2.6彈性多孔材料的波傳理論 .................. 18
2.6.1 多孔材料的波動方程式 ........ 18
2.6.2 壓縮波與剪力波 .............. 19
2.7 壓縮多孔材造成各參數之改變 ........ 22
第三章 轉換矩陣與材料之吸音 ................ 27
3.1 各種材料之轉換矩陣 ................ 27
3.1.1 多孔材之轉換矩陣 ............ 27
3.1.2 彈性固體之轉換矩陣 ...... ..........32
3.1.3 流體之轉換矩陣 ............. 35
3.2 交界面之轉換矩陣 .................. 36
3.2.1流體-流體間之轉換矩陣 ........ 36
3.2.2彈性固體-彈性固體間之轉換矩陣 . 37
3.2.3多孔材-多孔材間之轉換矩陣 .... 37
3.2.4流體-彈性固體間之轉換矩陣 .... 39
3.2.5流體-多孔材間之轉換矩陣 ...... 39
3.2.6彈性固體-多孔材間之轉換矩陣 .. 40
3.3轉換矩陣求解及材料之吸音率 ......... 41
第四章 空氣中壓縮作用對吸音率之影響 ........ 44
4.1 理論驗證 .................... 44
4.1.1表面阻抗比較 ................. 44
4.1.2 吸音率比較 .................. 48
4.1.3 壓縮後其吸音率之比較 ........ 51
4.2 材料參數之選取 ................ 55
4.3各材料不受壓之吸音特性 ............ 56
4.3.1 各材料在正向入射時不同厚度之情況 . 56
4.3.2 各材料斜向入射之情況 ........ 61
4.4各材料受壓縮作用後之吸音特性 ....... 63
4.4.1 各材料在正向入射時之情況 .... 63
4.4.2 各材料在斜向入射時之情況 .... 69
第五章 水下吸音效能探討 ............ 74
5.1 水下吸音材料之選取 ................ 74
5.1.1 一般橡膠 ................. 74
5.1.2 Rho-C 橡膠 ................. 76
5.2吸音材料之參數探討 ................. 78
5.2.1 吸音材料之參數探討 .......... 78
5.2.2 實驗驗證 ............... 83
5.3 模擬潛艦之吸音效能分析 ............ 84
5.3.1 不考慮水壓影響下之吸音效能探討 . 84
5.3.2 在水壓影響下其吸音效能探討 .. 89
第六章 結論與展望 ................. 95
6.1 結論 ....................... 95
6.2 未來展望 .......................... 97
參考文獻 ................................... 98
參考文獻
1.Zwikker, C. and Kosten, C. W., Sound Absorbing Materials., Elsevier, New York (1949).
2.Craggs, A. and Hildebrandt, J. G., Effective densities and resitivities for acoustic propagation in narrow tubes., J. Sound Vib., 92, 321-331 (1984).
3.Craggs, A. and Hildebrandt, J. G., The normal incidence absorption coefficient of a matrix of narrow tubes with constant cross-section., J. Sound Vib., 105, 101-107 (1986).
4.Stinson, M. R., The propagation of plane sound wave in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape., J. Acoust. Soc. Amer., 89, 550-558 (1991).
5.Johnson, D. L., Koplik, J. and Dashen, R., Theory of dynamic permeability and tortuosity in fluid-saturated porous media., J. Fluid Mechanics, 176, 379-402 (1987).
6.Attenborough, K., Acoustical characteristics of porous materials., Physics Reports., 82, 179-227 (1982).
7.Delany, M. E. and Bazley, E. N., Acoustical properties of fibrous materials. Applied Acoustics, 3, 105-116 (1970).
8.Biot, M. A., Theory of elasticity and cinsolidation for a porous anisotropic solid., J. Appl. Physics, 26, 182-185 (1955).
9.Biot, M. A., The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range., J. Acoust. Soc. Amer., 28, 168-178 (1956).
10.Biot, M. A., The theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range., J. Acoust. Soc. Amer., 28, 179-191 (1956).

11.Biot, M. A. and Willis, D. G., The elastic coefficients of the theory of consolidation., J. Appl. Mechanics, 24, 594-601 (1957).
12.Brekhovskikh, L. M., Waves in Layered Media., Acdenic Press, New York (1960).
13.Allard, J. F., Bourdier, R. and Depollier, C., Biot waves in layered media., J. Appl. Physics, 60, 1926-1929 (1986).
14.Allard, J. F., Champoux, Y. and Depollier, C., Modelization of layered sound absorbing materials with transfer matrices., J. Acoust. Soc. Amer., 82, 1792-1796 (1987).
15.Allard, J. F., Depollier, C., Rebillard, R., Lauriks, W. and Cops, A., Inhomogeneous Biot waves in layered media., J. Appl. Physics, 66, 2278-2284 (1989).
16.Bernard Castagned, Achour Aknine, Bruno Brouard, Viggo Tarnow, Effects of compression on the sound absorption of fibrous materials., Applied Acoustics, v 61, n 2, 173-182 (2000)
17.R.D. Corsaro, J.D. Klunder, J. Jarzynski, Filled rubber materials system: application to echo absorption in waterfilled tanks., J. Acoust. Soc. Amer., 68(2), 655-664 (1980)
18.Biju Philip, Jose K. Abraham, Vijay K. Varadan, Passive underwater acoustic damping materials with Rho-C rubber-carbon fiber and molecular sieves, Smart Materials and Structures, v 13, n 6 , p N99-N104, (2004)
19.Allard, J. F., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials., Elsevier Applied Science, London (1993).
20.Johnson, D. L., Recent developments in the acoustic properties of porous media., In Proc. Int. School of Physics Enrico Fermi, Course XCIII, ed. D. Sette. North Holland Publishing Co., Amsterdam., pp. 255-290 (1986).

21.Beranek, L. L., Acoustic impedance of porous materials., J. Acoust. Soc. Amer., 13, 248-260 (1942).
22.Champoux, Y., Stinson, M. R., Daigle, G. A., Air-based system for the measurement of porosity., J. Acoust. Soc. Amer., 89, 910-916 (1991).
23.Allard, J. F., Aknine, A. and Depollier, C., Acoustical properties of partially reticulated foams with high and medium flow resistance., J. Acoust. Soc. Amer., 79, 1734-1740 (1986).
24.Stroll, R. D., In Physics of Sound in Marine Sediments., ed. L. Hampton. Plenum, New York (1974).
25.Carmen, P. C., Flow of Gases Through Porous Media., Acdemic Press, New York (1956).
26.Brown, R. J. S., Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled porous media., Geophysics, 45, 1269-1275 (1980).
27.Brown, R. L. and Bolt, R. H., The measurement of flow resistance of porous acoustic materials., J. Acoust. Soc. Amer., 13, 337-344 (1942).
28.Lafarge D, Allard JF, Brouard B., Characteristic dimensions and predictions at high frequencies of the surface impedance of porous layers., J. Acoust. Soc. Amer., 93, 2474-2478 (1993)
29.Henry M, Lemarinier P, Allard JF., Evaluation of the characteristic dimensions for porous sound-absorbing materials., J. Appl. Phys., 77, 17-20 (1995)
30.Kinsler, L. E. et al., Fundamentals of Acoustics, John Wiley & Sons, New York (1982).
31.Folds, D. L. and C. D. Loggins, Transmission and reflection of ultrasonic waves in layered media, J. Acoust. Soc. Amer., 62, 1102-1109 (1977).

32.Brouard B., D. Laforge and J. F. Alland, A general method of midelling sound propagation in layered media, J. Sound Vib. 183(1), 129-142 (1995).
33.佟俊桓,多孔纖維材質吸音特性之分析研究,台灣大學碩士論文 (1999).
34.GoodRich company ,http://www.goodrich.com
35.R.D. Corsaro, J.D. Klunder, A filled silicone rubber materials system with selectable acoustic properties for molding and coating application at ultrasonic frequencies, NRL report 8301 (1979)
36.上海博晶分子篩有限公司 ,http://www.bojing.net
37.B.E Read, G.D Dean, Modelling non-linear stress-strain behaviour of rubber toughened plastics, Plastics. Rubber and Composites, v30, n7, 328-336 (2001).
38.林武文, 潛艇的匿蹤技術, 第五屆水下工程學術研討會論文集,(2004).
39.簡志宇, 以注水彈性阻抗管測量材料之水中聲學特性之研究, 台灣大學碩士論文 (2005)
40.阮建富, 彈性多孔材與隔音板組合之波傳特性,台灣大學碩士論文 (2002)
41.曾一航, 吸、隔音材料性能之理論探討,台灣大學碩士論文 (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top