跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/23 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:袁琪葦
研究生(外文):CHI-WEI YUAN
論文名稱:奈米壓印對位系統之研製:影像檢測技術與雷射干涉儀於多層壓印機台之應用
論文名稱(外文):Research and Design of Nanoimprint Lithography Alignment System : Application of Image Detection and Laser Interferometer in Multi-layer Nanoimprint system
指導教授:李世光李世光引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:127
中文關鍵詞:奈米壓印疊對技術位移平台繞射式光學尺
外文關鍵詞:nano-imprintlithographyoverlap controlprecision alignmentdiffractive laser encoder
相關次數:
  • 被引用被引用:2
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於奈米科技的快速發展以及半導體製程的設計線寬逐年減小,量測定位技術之需求大增,其精度要求也漸增至奈米等級。根據ITRS(International Technology Roadmap of Semiconductor)的roadmap所述,2004年對線寬之要求由2003年的107nm縮減為90nm,對於疊對(overlap)精確度的要求也從3.5nm降為3.2nm。在線寬從100奈米朝向10奈米發展的過程中,傳統微影術 (lithography)面臨極大的難題,在光源與步進掃描的系統由於對應光波長之繞射極限問題,在成功突破100奈米之後,由於153奈米之光源仍不夠穩定,50奈米以下的製程仍有極大的問題待克服。而奈米壓印(nano-imprint)則提供了一條已證明CD(critical dimension)可達到10奈米以下的另一路徑。但是無論是步進掃描的系統或是奈米壓印的方式,其相關定位技術仍必須一起進步以實現10奈米的尺寸之下之製程。
論文主體在於設計並製作奈米壓印系統平台以及定位子系統。壓印系統之對位重點有二:其一為晶圓面與母模之平行度,其中將採用氣壓方式使之自動平行校準;其二為壓印母模與晶圓本身之二軸精密對位,論文將使用類似於目前掃描步進機的對位控制方式,使用兩段式控制 (dual-stage control),第一階段使用下層的位移平台配合傳統的對位記號與白光顯微術做微米等級的粗定位,第二階段的對位系統採用光學干涉儀與影像檢測法並行之方式配合壓電致動器作奈米等級的精準對位。其中光學干涉儀分為近場模式量測以及遠場量測模式。遠場量測模式採用干涉術,配合壓印模與晶圓上的光柵尺,以繞射式光學尺的方式呈現;近場量測模式採用光柵耦合原理,以正負一階光強變化的曲線作為檢測的依據。而影像檢測法採用對位光柵偏移所造成光學影像偏差的方式,以CCD作影像耦合運算,藉由數值模擬計算之方式突破繞射極限。最終目的為開發一套具有奈米等級多道製程對位能力的奈米壓印系統。
As semiconductor vendors strive to reduce the feature sizes of integrated circuits, the need for next-generation lithography (NGL) tools increases. The escalating cost of these tools for conventional optical and extreme ultraviolet (EUV) lithography is driven in part by the need for complex optical sources and optics. The cost for a single NGL tool could exceed $50 million in the next few years, a prohibitive figure for many companies and laboratories. Nanoimprint offers a low-cost alternative method for printing sub-100 nm features with great potential accuracy, high resolution, and reductivity. Overlay with alignment precision in the range of the resolution is mandatory for a large number of applications. Specific process details of UV nanoimprint lithography (UV-NIL) offer three main advantages to reach the overlay accuracy required. First, the transparent imprint molds allow one to adopt alignment techniques developed for optical or x-ray lithography. Second, the absence of thermal cycles in UV-NIL enhances the overlay accuracy principally and is favorable for optical interferometric techniques. Third, prior to UV curing the imprint resist remains in a state of low viscosity, allowing fine alignment in contact mode. Alignment errors that may occur during lowering of the imprint mold to the substrate surface and the imprint into the resist can be corrected within certain margins. The extremely small gap as well as the strong parallelism between mold and resist surface enhances signal quality and the achievable resolution. In this contribution, this paper presents some details of an alignment technique constructed by grating mark on mold and wafer. This method is like grating interferometry, but the tiny distance between mold and wafer let the theory and result totally different. Even based on different theory, both methods can provide high accuracies under 100nm.
誌謝...................................................................................................................... i
中文摘要............................................................................................................ iii
英文摘要............................................................................................................ iv
目錄.................................................................................................................... vi
圖目錄..............................................................................................................viii
表目錄................................................................................................................ xi
第1 章 緒論....................................................................................................... 1
1.1 研究動機.............................................................................................. 1
1.2 文獻回顧.............................................................................................. 3
1.2.1 奈米壓印微影............................................................................ 3
1.2.2 微影疊對技術............................................................................ 7
1.2.3 奈米壓印疊對方式.................................................................... 9
1.3 論文架構及概要................................................................................ 13
第2 章 光學定位系統之原理......................................................................... 15
2.1 成像原理............................................................................................ 15
2.1.1 光的數學表示式...................................................................... 15
2.1.2 基本成像理論.......................................................................... 17
2.2 繞射式光學尺原理............................................................................ 21
2.2.1 繞射式光柵原理...................................................................... 22
2.2.2 光柵移動造成相位偏移.......................................................... 24
2.2.3 光波干涉原理.......................................................................... 26
2.2.4 相差原理.................................................................................. 28
第3 章 系統架構設計與組裝......................................................................... 36
3.1 奈米壓印機台架構............................................................................ 36
3.2 光學定位系統設計............................................................................ 37
3.2.1 近場光學量測.......................................................................... 37
3.2.2 遠場光學量測.......................................................................... 42
3.3 三軸微動精密平台設計與選擇........................................................ 48
3.3.1 三軸微動精密平台規格訂定.................................................. 49
3.4 壓印定位系統重要參數.................................................................... 54
3.4.1 數值孔徑(N.A.值)的選擇....................................................... 54
3.4.2 影像接收系統評估.................................................................. 55
第4 章 系統模擬與分析................................................................................. 58
4.1 G-Solver™理論介紹........................................................................... 59
4.1.1 RCWA 理論介紹...................................................................... 59
4.1.2 建立模擬基礎.......................................................................... 65
4.2 OptiFDTD 理論介紹........................................................................... 68
4.2.1 Yee 的FDTD 演算法............................................................... 69
4.2.2 穩定準則.................................................................................. 72
4.2.3 吸收邊界(Absorbing Boundary Condition)的處理................ 74
4.3 光柵偏移訊號分析............................................................................ 80
4.4 最佳化光柵幾何外型........................................................................ 85
4.5 母模與晶圓面間距離與繞射效率的關係........................................ 89
4.6 結論.................................................................................................... 93
第5 章 壓印定位系統之校驗與結果............................................................. 95
5.1 實驗方法............................................................................................ 95
5.2 光路校正方式.................................................................................... 96
5.3 運動平台控制系統............................................................................ 97
5.3.1 PID 控制基本架構................................................................... 97
5.3.2 XYθ 運動控制........................................................................ 100
5.4 實驗結果與分析.............................................................................. 104
第6 章 結論與未來展望............................................................................... 113
6.1 結論.................................................................................................. 113
6.2 未來展望.......................................................................................... 113
參考文獻......................................................................................................... 116
1 The National Technology Roadmap for Semiconductors, 1997 Edition, SIA
Semiconductor Industry Association.
2 Lloyd R. Harriott, “Limits of Lithography”, Proceeding of the IEEE, vol.89,
NO.3, March 2001, pp. 366-374
3 Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstorm, “Imprint of
sub-25nm vias and trends in polymers ”, Applied Physics Letters, vol. 67,
1995, pp.3114-3116
4 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm via and
trenches in polymers,” Applied Physics Letters, Vol. 67 (21), pp.3114-3116,
November 20, 1995.
5 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with
25-nanometer resolution,” Science, Vol. 272, pp. 85-87, April 5, 1996.
6 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,”
Journal of Vacuum Society and Technology B, Vol. 14, pp. 4129-4133, 1996.
7 S. Y. Chou, P. R. Krauss, W. Zhang, and L. Guo, L. Zhuang, “Sub-10 nm
imprint lithography and applications,” Journal of Vacuum Society and
Technology B, Vol. 15, pp. 2897-2904, 1997.
8 L. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect
transistors fabricated using imprint lithography,” Applied Physics Letters, Vol.
71, pp. 1881-1883, September 29, 1997.
9 P. R. Krauss, and S. Y. Chou, “Nano-compact disks with 400 Gbit/in2
storage density fabricated using nanoimprint lithography and read with
proximal probe,” Applied Physics Letters, Vol. 71, pp. 3174-3176, November
24, 1997.
10 W. Wu, B. Cui, X. Sun, W. Zhang, L. Zhuang, L. Kong, and S. Y. Chou,
“Large area high density quantized magnetic disks fabricated using
nanoimprint lithography,” Journal of Vacuum Society and Technology B, Vol.
16, pp. 3825-3829, 1998.
11 X. Sun, L. Zhuang, W. Zhang, and S. Y. Chou, “Multilayer resist methods
for nanoimprint lithography on nonflat surfaces,” Journal of Vacuum Society
and Technology B, Vol. 16, pp. 3922-3925, 1998.
12 H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,”
Journal of Vacuum Society and Technology B, Vol. 16, pp. 3926-3928, 1998.
13 Z. Yu, S. J. Schablitsky, and S. Y. Chou, “Nanoscale GaAs
metal–semiconductor–metal photodetectors fabricated using nanoimprint
lithography,” Applied Physics Letters, Vol. 74, pp. 2381-2383, April 19,
1999.
14 J. Wang, X. Sun, L. Chen, and S. Y. Chou, “Direct nanoimprint of
submicron organic light-emitting structures,” Applied Physics Letters, Vol. 75,
pp. 2767-2769, November 1, 1999.
15 B. Cui, W. Wu, L. Kong, X. Sun, and S. Y. Chou, ” Perpendicular quantized
magnetic disks with 45 Gbits on a 4 X 4 cm2 area,” Journal of Applied
Physics, Vol. 85, pp. 5534-5536, April 15, 1999.
16 P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, S.
Damle, M. Stewart, J. Ekerdt, S. V. Sreenivasan, J. C. Wolfe, and C. G.
Willson, “Patterning curved surfaces: Template generation by ion beam
proximity lithography and relief transfer by step and flash imprint
lithography,” Journal of Vacuum Society and Technology B, Vol. 17, pp.
2965-2969, 1999.
17 M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M.
Wedlake, T. Michaelson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson,
“Step and flash imprint lithography: a new approach to high resolution
patterning,” Proceedings of SPIE, Vol. 3676, pp. 379-391, 1999.
18 M. Colburn, T. Bailey, B. J. Choi, J. G. Ekerdt, S. V. Sreenivasan, and C. G.
Willson, “Development and advantages of step and flash imprint
lithography,” Solid State Technology, Vol. 46, pp. 67-76, 2001.
19 T. C. Bailey, S. C. Johnson, D. J. Resnick, S. V. Sreenivasan, J. G. Ekerdt,
and C. G. Willson, “Step and flash imprint lithography: an efficient nanoscale
printing technology,” Journal of Photopolymer Science and Technology, Vol.
15 (3): 481, 2002.
20 B. J. Choi, S. Johnson, S. V. Sreenivasan, M. Colburn, T. Bailey, and C. G.
Willson, “Partially constrained compliant stages for high resolution imprint
lithography,” Proceedings of ASME DETC2000, Vol. 7B: 861, 2000.
21 M. Colburn, A. Grot, B. J. Choi, M. Amistoso, T. Bailey, S. V. Sreenivasan,J. G. Ekerdt, and C. G. Willson, “Patterning non-flat substrates with a low
pressure, room temperature imprint lithography process,” Journal of Vacuum
Society and Technology B, Vol. 19, pp. 2162-2172, 2001.
22 B. J. Choi, S. V. Sreenivasan, S. Johnson, M. Colburn, and C. G. Willson,
“Design of orientation stages for step and flash imprint lithography,”
Precision Engineering, Vol. 25, pp. 192-199, 2001.
23 B. J. Choi, M. Meissl, M. Colburn, T. Bailey, P. Ruchhoeft, S. V.
Sreenivasan, F. Prins, S. Banerjee, J. G. Ekerdt, and C. G. Willson,
“Layer-to-layer alignment for step and flash imprint lithography,”
Proceedings of SPIE, Vol. 4343, pp. 436-439, 2001.
24 D. J. Resnick, D. P. Mancini, S. V. Sreenivasan, and C. G. Willson,
“Release Layers for Contact and Imprint Lithography,” Semiconductor
International, pp. 71-80, June 1, 2002.
25 T. C. Bailey, S. C. Johnson, M. D. Dickey, B. J. Smith, A. T. Jamieson, E.
K.Kim, N. A. Stacey, D. Mancini, W. J. Dauksher, K. Nordquist, D. J.
Resnick, S. V. Sreenivasan, J. G. Ekerdt, and C.G. Willson, “Recent
Advances in Step and Flash Imprint Lithography,” Proceedings of 39th
Interface Symposium, 2002.
26 S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim, A. T.
Jamieson, N. A. Stacey, J. G. Ekerdt, C. G. Willson, D. P. Mancini, W. J.
Dauksher, K. J. Nordquist, and D. J. Resnick, “Advances in Step and Flash
imprint lithography,” Proceedings of SPIE, Vol. 5037, pp. 197-202, 2003.
27 D. J. Resnick, D. Mancini, W. J. Dauksher, K. Nordquist, T. C. Bailey, S.
Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, ”Improved step
and flash imprint lithography templates for nanofabrication,” Microelectronic
Engineering, Vol. 69, pp. 412–419, 2003.
28 T. Bailey, B. J. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan,
J. G. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: defect
analysis,” Journal of Vacuum Society and Technology B, Vol. 19, pp.
2806-2810, 2001.
29 S. V. Sreenivasan, C. G. Willson, N. E. Schumaker, and D. J. Resnick,
“Cost of ownership analysis for patterning using step and flash imprint
lithography,” Proceedings of SPIE, Vol. 4688, pp. 903-909, 2002.
30 B. J. Smith, N. A. Stacey, J. P. Donnelly, D. M. Onsongo, T. C. Bailey, C. J.
Mackay, S. V. Sreenivasan, S. K. Banerjee, J. G. Ekerdt, and C. G. Willson,
“Employing step and flash imprint lithography for gate level patterning of a
MOSFET device,” Proceedings of SPIE, Vol. 5037, pp. 1029-1034, 2003.
31 D. J. Resnick, W. J. Dauksher, D. Mancini, K. J. Nordquist, T. C. Bailey, S.
Johnson, N. Stacey, J. G. Ekerdt, C. G. Willson, S. V. Sreenivasan, and N.
Schumaker, “Imprint lithography for integrated circuit fabrication,” Journal
of Vacuum Society and Technology B, Vol. 21, pp. 2624-2631, 2003.
32 T. I. Kamins, D. A. A. Ohlberg, R. Stanley Williams, W. Zhang, and S. Y.
Chou, “Positioning of self-assembled, single-crystal, germanium islands by
silicon nanoimprinting,” Applied Physics Letters, Vol. 74, pp. 1773-1775,March 22, 1999.
33 W. Wu, J. Gu, H. Ge, C. Keimel, and S. Y. Chou, “Room-temperature Si
single-electron memory fabricated by nanoimprint lithography,” Applied
Physics Letters, Vol. 83, pp. 2268-2270, September 15, 2003.
34 Z. Yu, and S. Y. Chou, “Triangular profile imprint molds in nanograting
fabrication,” Nano Letters, Vol. 4, No. 2, pp. 341-344, 2004.
35 J. Wang, X. Sun, L. Chen, L. Zhuang, and S. Y. Chou, “Molecular
alignment in submicron patterned polymer matrix using nanoimprint
lithography,” Applied Physics Letters, Vol. 77, pp. 166-168, July 10, 2000.
36 W. Zhang, and S. Y. Chou, “Multilevel nanoimprint lithography with
submicron alignment over 4 in. Si wafers,” Applied Physics Letters, Vol. 79,
pp. 845-847, August 6, 2001.
37 W. Zhang, and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in. wafer
using nanoimprint at all lithography levels,” Applied Physics Letters, Vol. 83,
pp. 1632-1634, August 25, 2003.
38 Mingtao Li, Lei Chen, Wei Zhang, and Stephen Y Chou, “Pattern transfer
fidelity of nanoimprint lithography on six-inch wafers,” Nanotechnology, Vol.
14, pp. 33-36, 2003.
39 S. Y. Chou, L. Zhuang, and L. Guo, “Lithographically induced
self-construction of polymer microstructures for resistless patterning,”
Applied Physics Letters, Vol. 75, pp. 1004-1006, August 16, 1999.
40 X. Lei, L. Wu, P. Deshpande, Z. Yu, W. Wu, H. Ge, and S. Y. Chou, “100
nm period gratings produced by lithographically induced self-construction,”
Nanotechnology, Vol. 14, pp. 786-790, 2003.
41 S. Y. Chou, and C. Keimel, J. Gu, “Ultrafast and direct imprint of
nanostructures in silicon,” Nature, Vol. 417, pp. 835-837, June 20, 2002.
42 Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, “Ultrafast
patterning of nanostructures in polymers using laser assisted nanoimprint
lithography,” Applied Physics Letters, Vol. 83, pp. 4417-4419, November 24,
2003.
43 Christopher Gound, “Advanced Process Control: Basic Functionally
Requirements for Lithography, ” IEEE/SEMI Advanced Semiconductor
Manufacturing Conference, 2001.
44 Perioff, D.S., “A Four-Point Electrical Measurement Technique for
Characterizing Mask Superposition Errors on Semiconductor Wafer, ” IEEE
Journal of Solid-State Circuits, Vol.SC-13, No.4, pp.436-444, August, 1978.
45 MacMillen. D. and W. D. Ryden, ”Analysis of Image Field Placement
Deviations of a 5 Microlithography Reduction Lens,” Proceeding SPIE:
Optical Micro-Lithography-Technology, Vol.334, pp.78-89, 1982.
46 C.K. Peski, “Minimizing Patter Registration Error Through Wafer Stepper
Matching Techniques,” Solid State Technology, pp.111-115, May ,1982
47 W. Zapka, et al, “Mix-and-Match EBP/Optical Lithography of 1 MbitChips,"Microelectronic Engineering, vol. 13, no. 1-4, pp. 357-360, Mar,
1991.
48 Fink, I., Neal Sullivan and James, S. Leaks, “Overlay Sample Plan
Optimization for the Detection of Higher Order Contributions to
Misalignment,” SPIE , Vol.2196 / Integrated Circuit Metrology, Inspection,
and Process Control, Ⅷ, pp.389-399, 1994
49 Stauch, H., K, Simon, H.V. Scheunemann and H.L. Huber, “Impact of
Chunk Flatness on Wafer Distortion and Stepper Overlay Comparison of
Experimental and FEM Results, ” Microelectrionic Engineering, Vol.23,
pp.197-201, 1994.
50 Warren W. Flank, Gary E. Flores, Alan Walther and Manny Ferreira, “A
Retical Correction Technique to Minimize Lens Distortion Effects,” BACUS
Symposium, 1994
51 W. Flack, et al, “Application of Pattern Recognition in Mix-and-Match
Lithography,"Proceedings of SPIE - The International Society for Optical
Engineering, vol. 2440, pp. 913-927, 1995.
52 Yew, et al, “Mix-and-Match Lithography Processes for 0.1 µm MOS
Transistor Device Fabrication,” Proceedings of SPIE - The International
Society for Optical Engineering, vol. 2723, pp. 180-188, 1996.
53 G. Flores, et al, “The Implementation and Characterization of Advanced
Mix-and-Match Lithography,"Ultratech Stepper.
54 Laplanche, et al, “Mix and Match Capability of E-Beam Direct Write for
The 65 nm Technology," Proceedings of SPIE - The International Society
for Optical Engineering, vol. 5037 I, pp. 572-582, 2003.
55 T. Zayecz, “ Life Beyond Mix-and-Match: Controlling Sub-0.18µm
Overlay Errors,"Semiconductor International, 2000.
56 http://www.molecularimprints.com/Technology/alignment.html
57 C. S. Su and Y. S. Ku, “An Ion Source for Low Energy Ion Scattering
Spectrometry ”, Vacuum, vol. 40, 2000, pp. 467
58 http://www.asml.com/NASApp/asmldotcom/show.do?ctx=427
59 D L White, O R Wood Ⅱ, “Novel alignment system for imprint
lithography ”, Journal of Vacuum Science & Technology B, vol. 18, 2000,
pp.3552-3556
60 Nyyssonen, D., “Theory of optical edge detection and imaging of thick
layers,” J. Opt. Soc. Am., 72, pp. 1425-1436,1982.
61 Kirk, C. P., and Nyyssonen, D., “Modeling the Optical Microscope Images
of Thick Layers for the Purpose of Linewidth Measurement,” SPIE 538, pp.
179-187, 1985.
62 Yuan, C., and Strojwas, A. J., “Modeling the Optical Alignment and
Metrology Schemes Used in Integrated Circuit Manufacturing,” SPIE 1264,
pp. 203-218, 1990.
63 Seligson, J. L. et al., “Overlay metrology simulations - Analytical andexperimental validations,” Proceedings of SPIE Vol. 5038, pp.61-69 , 2003.
64 Seligson, J. L. et al., “Overlay Metrology Simulations,” Proceedings of SPIE
Vol. 4689, pp. 295-303, 2002.
65 GSOLVER V2.0 Manual, Grating Solver Development Company, Allen,
Texas, 1995.
66 Hecht, E., Optics, 3rd Edition, Addison Wesley Longman, New York, New
York, 1998.
67 Juergens, R.C. (Eds.), CODE V Reference Manual, Optical Research
Associates, Inc., Pasadena, CA, 1998.
68潘政晟,自校準繞射式雷射光學尺之設計與實驗,國立台灣大學應用力
學研究所碩士論文,2001
69 http://211.74.138.227/mtt/index.php
70林鼎晸,用於奈米雷射直寫儀之浪型次波長結構之模擬與研製,國立台
灣大學應用力學研究所碩士論文,2003
71 T. K. Gaylord, “Analysis and Applications of optical diffraction by
gratings,” Proceedings of the IEEE 73, pp894-937, 1985
72 C. L. Liu, and J. W. S. Liu, Linear Systems Analysis. New York:
McGraw-Hill, 1975
73 P. St. J. Russel, “Power conservation and field structures in uniform
dielectric gratings,” J. Opt. Soc. Amer. A, pp293-299, 1984.
74 S. Astilean, P. Lalanne, and M. Palamaru, ”Light transmission through
metallic channels much smaller than the wavelength” Opt. Commun 175,
pp265-273, 2000
75 K. S. Yee, “ Numerical solution of initial boundary value problems
involving Maxwell’s equation in isotropic media,"IEEE Trans. Antenna and
Propagat., vol.14, No.3, pp300-307, May 1966.
76 A. Taflove, Computational Electrodynamics The Finite Difference
Time-Domain Method,1995.
77 Z. Bi, K. Wu, C. Wu, and J. Litva,“A dispersive boundary condition for
microstrip component analysis using the FD-TD method,"IEEE Trans.
Antenna. and Propagat., vol. MTT-40, no. 4, pp.774-777, Apr. 1992.
78 O. M. Ramahi, “Complementary operators: A method to annihilate artificial
reflections arising from the truncation of computational domain in the
solution of partial differential equations,” IEEE Trans. Antenna. and
Propagat., vol.43, pp.697-704, Jul. 1995.
79 J. P. Benerger, “A perfectly matched layer for the absorption of
electromagnetic waves,” J. Computat. .Phys., vol. 114, pp185-200, 1994.
80 Z. S Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched
anisotropic absorber for use as absorbing boundary condition,” IEEE Trans.
Antenna. and Propagat., vol.43, pp.1460-1463, Jul. 1995.
81 S. D. Gedney, “An Anisotropic Perfectly Matched Layer-Absorbing
Medium for the Truncation of FDTD Lattices "IEEE Trans. AP., vol. 44,
No. 12, pp. 1630-1639, Dec. 1996.
82 http://www.olympusmicro.com/primer/anatomy/anatomyjava.html
83陳朝光等 編著, 自動控制, 高立圖書有限公司, 1998
84張道弘 編譯, PID 控制理論與實務, 全華科技圖書, 1995
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top