跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周鼎贏
研究生(外文):Ting-Ying Chou
論文名稱:以非奇異性暇積分改善三維邊界積分法
論文名稱(外文):An Innovation of 3-D non-singular boundary integral equations
指導教授:黃維信黃維信引用關係
指導教授(外文):Hwang, Wei- Shien
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:179
中文關鍵詞:邊界元素法邊界積分式奇異積分內流場
外文關鍵詞:Boundary Element MethodBoundary Integral EquationSingular IntegralInternal Flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在利用理論解析推導三維無奇異性瑕積分的邊界積分方程式,並配合數值模擬加以探討。有鑒於一般三維邊界元素法對於高階元素的瑕積分處理模式,多以適應性積分或極座標轉換為主,本論文提出另一種計算模式,將瑕積分轉換為一般積分加上部分沿著元素邊界的線積分,使得在瑕積分的計算能夠更精確及更簡潔。

其中,利用高斯通量定理,消除格林函數之奇異性。作法是僅需對原有的奇異性核函數加入一項使其異性消除,同時再將函數的解析積分值減去原方程式。由於格林函數的奇異性經過數學上的技巧加以消除,因此當求解未知數時已經不需要再假設形狀函數,即可直接使用物體真實的外型來做計算,也就是直接將物體上分佈的積分點視為滿足邊界條件的節點。如此,不但在計算的過程中大幅地被簡化,從此奇異積分項也將不再需要特別處理,使得數值程式得以更簡潔的被撰寫。

最後,本文將探討本篇論文所提出的理論解析,在實際數值上使用平滑邊界模型及非平滑邊界模型的特性。
The main purpose of this thesis is to present an efficient analysis for singular integrals of three dimensional boundary integral equations. Numerical analysis is used for this discussion. In treating a high order element which has a singular integral, most three dimensional boundary element methods use adaptive integration or polar coordinates transformation. This thesis also includes an alternative method for calculating boundary integral equations. The method transforms the singular integral into a desingularized integral plus a linear integral which is along the boundary of the element; thus, it is more accurate and simple.

Two kinds of eliminating the singularity are mentioned. One is for Green’s function in elements by using linear integrals; the other is for its normal derivative by the divergence theorem. The method is to add a term into the original singular kernel while it subtracts its analytical solution from the original equation. Since the singularity of Green’s function can be eliminated by such a mathematical technique, shape function does not need to be supposed while solving the unknown. The calculation can be directly applied to the real shape of the object by taking the integral points distributed on the object as nodes that satisfy boundary conditions. Hence, not only the calculation is significantly simplified but also singularity terms do not require special processing. Therefore, the numerical programming is much easier. Applications of numerical theoretic analysis on smooth and non-smooth boundary models will be proposed and discussed at the end.
Abstract i
Acknowledgements ii
Table of Contents iii
List of Figures vi
Prologue xv

Chapter 1:Introduction 1
1.1 Overview 1
1.2 Motivation and Objectives 3
1.3 Literature Survey and Review 4
1.4 Research Methods 6

Chapter 2:Theoretical Analysis 8
2.1 The Divergence Theorem and Green’s identities 8
2.2 The Boundary Integral Equation 10
2.3 Singular Integrals with Doublet Distribution 15
2.4 Singular Integrals with Source Distribution 20
2.5 Nearly Singular Integrals 25

Chapter 3:Numerical Analysis 28
3.1 Numerical Integration 28
3.1.1 Newton-Cotes Formula 28
3.1.2 The Gaussian Quadrature 31
3.1.3 The Lobatto Quadrature 32
3.2 Grid Generation 33
3.3 The Boundary Integral Method 36
3.3.1 Discrete Non-Smooth Boundary Model 37
3.3.2 Discrete Smooth Boundary Model 45
3.4 Numerical Implementation 49
3.4.1 Analysis the Relative Source Point p and Field
Point q on Surface 50
3.4.2 Dirichlet Boundary Condition 67
3.4.2.1 Spheroid Model 68
3.4.2.2 Three Dimensional Rectangle Model 69
3.4.3 Neumann Boundary Condition 76
3.4.3.1 Spheroid Model 76
3.4.3.2 Three Dimensional Rectangle Model 78
3.4.4 Mix Boundary Condition 84
3.4.4.1 Spheroid Model 84
3.4.4.2 Three Dimensional Rectangle Model 86
3.4.4.3 Contrast between B.E.M and B.I.M 92

Chapter 4:Conclusions and Suggestions 97

Bibliography 100

Appendix A:Error in Three Dimensional Rectangular Model i
I. Dirichlet Problem i
A. Uniform Grid i
B. Non-uniform Grid vi
II. Neumann Problem xviii
A. Uniform Grid xviii
B. Non-uniform Grid xxiv
III. Mix Problem xxxv
A. Uniform Grid xxxv
B. Non-uniform Grid xli

Appendix B:Error in Spheroid Model liii
I. Dirichlet Probleml iii
II. Neumann Problem lvi
III. Mix Problem lix
Hung, L. P., Boundary Integral Method in 2-D Potential Flow Problem, National Taiwan Univ., Taipei, 2000.

Jaswon, M. A., “Integral Equation Methods in Potential Theory I”, Proc. Roy. Soc. Lond., Vol. A275, pp.23-32, 1963.

Symm, G. T.,” Integral Equation Methods in Potential Theory II”, Proc. Roy. Soc. Lond., Vol. A275, pp.33-46, 1963.

Rizzo, F. J., “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics”, Quart. Appl. Math., Vol. 25, pp. 83-95, 1967.

Curse, T. A. and Rizzo F. J., “A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem I”, J. Math. Anal. App., Vol. 22, pp. 244-259, 1968.

Cruse, T. A., “A Direct Formulation and Numerical Solution of the Transient Elastodynamic Problems II”, J. Math. Anal. App., Vol. 22, pp. 341-355, 1968.

Symm, G. T., Treatment of Singularities in the Solution of Laplace Equation by An Integral Equation Method, National Physics Laboratory Report No.: NAC31, 1973.

Landweber, L. and Macagno, M., Irrotational Flow about Ship Forms, IIHR report, U. of Iowa, No.123, 1969.

Hwang, W. S., “Hyper-singular Boundary Integral Equations for Exterior Acoustic Problems”, J. Acoustic Soc. Am., Vol. 101, pp. 3336-3342, 1997.

Huang, Y. Y., The Study on Potential Flow by Nonsingular Boundary Element Methods, National Taiwan Univ., Taipei, 1997.

Hwang, W. S. and Huang, Y. Y., “Non-singular Direct Formulation of Boundary Integral Equations for Potential Flows”, Int. J. Numer. Mech. Fluids, Vol. 26, pp. 627-635, 1998.

Chang, J. M., “Numerical Studies on Desingularized Cauchy’s Formula with Applications to Interior Potential Problems”, Int. J. Numer. Mech. Engng., Vol. 46, pp. 805-824, 1999.

Yang, S. A., “On the Singularities of Green’s Formula and Its Normal Derivative with An Application to Surface Wave Body Interaction Problems”, Int. J. Numer. Mech. Engng., Vol. 47, pp. 1841-1864, 2000.

Huang, Q. and Cruse, T. A., “Some Notes on Singular Integral Techniques in Boundary Element Analysis”, Int. J. Numer. Meth. Engng., Vol. 36, pp. 2643-2659, 1993.

Johnston, P. R., “Semi-sigmoidal Transformations for Evaluation Weakly Singular Boundary Element Integrals”, Int. J. Numer. Mech. Engng., Vol. 4, pp.1709-1730, 2000.

Johnston, P. R. and Elliott, D., “Error Estimation of Quadrature Rules for Evaluating Singular Integrals in Boundary Element Problems”, Int. J. Numer. Meth. Engng., Vol. 48, pp. 949-962, 2000.

Ko, C. H., Numerical Simulation of Three Dimensional Water Sloshing Problems Using Boundary Element Methods, National Taiwan Univ., Taipei, 1998.

Hwang, W. S., “A Boundary Node Method for Airfoils Based on the Dirichlet Condition”, Comput. Meth. Appl. Mech. Engng., Vol. 190, pp. 1679-1688, 2000.

Lutz, E. D., “Systematic Derivation of Contour Integration Formulae for Laplace and Elastostatic Gradient BIE’s”, Comput. Mech., Vol. 14, pp.339-353, 1994.

Hwang, W. S., Study Note.

Whittaker, E. T. and Robinson, G., The Newton-Cotes Formulae of Integration, §76 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed., Dover, New York, pp. 152-156, 1967.

Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill, New York, pp. 323-325, 1956.

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, pp.888-890, 1972.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top