臺灣博碩士論文加值系統

(44.210.99.209) 您好！臺灣時間：2024/04/18 16:34

:::

詳目顯示

:

• 被引用:0
• 點閱:347
• 評分:
• 下載:25
• 書目收藏:0
 本論文旨在利用理論解析推導三維無奇異性瑕積分的邊界積分方程式，並配合數值模擬加以探討。有鑒於一般三維邊界元素法對於高階元素的瑕積分處理模式，多以適應性積分或極座標轉換為主，本論文提出另一種計算模式，將瑕積分轉換為一般積分加上部分沿著元素邊界的線積分，使得在瑕積分的計算能夠更精確及更簡潔。 其中，利用高斯通量定理，消除格林函數之奇異性。作法是僅需對原有的奇異性核函數加入一項使其異性消除，同時再將函數的解析積分值減去原方程式。由於格林函數的奇異性經過數學上的技巧加以消除，因此當求解未知數時已經不需要再假設形狀函數，即可直接使用物體真實的外型來做計算，也就是直接將物體上分佈的積分點視為滿足邊界條件的節點。如此，不但在計算的過程中大幅地被簡化，從此奇異積分項也將不再需要特別處理，使得數值程式得以更簡潔的被撰寫。 最後，本文將探討本篇論文所提出的理論解析，在實際數值上使用平滑邊界模型及非平滑邊界模型的特性。
 The main purpose of this thesis is to present an efficient analysis for singular integrals of three dimensional boundary integral equations. Numerical analysis is used for this discussion. In treating a high order element which has a singular integral, most three dimensional boundary element methods use adaptive integration or polar coordinates transformation. This thesis also includes an alternative method for calculating boundary integral equations. The method transforms the singular integral into a desingularized integral plus a linear integral which is along the boundary of the element; thus, it is more accurate and simple. Two kinds of eliminating the singularity are mentioned. One is for Green’s function in elements by using linear integrals; the other is for its normal derivative by the divergence theorem. The method is to add a term into the original singular kernel while it subtracts its analytical solution from the original equation. Since the singularity of Green’s function can be eliminated by such a mathematical technique, shape function does not need to be supposed while solving the unknown. The calculation can be directly applied to the real shape of the object by taking the integral points distributed on the object as nodes that satisfy boundary conditions. Hence, not only the calculation is significantly simplified but also singularity terms do not require special processing. Therefore, the numerical programming is much easier. Applications of numerical theoretic analysis on smooth and non-smooth boundary models will be proposed and discussed at the end.
 Abstract iAcknowledgements iiTable of Contents iiiList of Figures viPrologue xvChapter 1：Introduction 11.1 Overview 11.2 Motivation and Objectives 31.3 Literature Survey and Review 41.4 Research Methods 6Chapter 2：Theoretical Analysis 82.1 The Divergence Theorem and Green’s identities 82.2 The Boundary Integral Equation 102.3 Singular Integrals with Doublet Distribution 152.4 Singular Integrals with Source Distribution 202.5 Nearly Singular Integrals 25Chapter 3：Numerical Analysis 283.1 Numerical Integration 283.1.1 Newton-Cotes Formula 283.1.2 The Gaussian Quadrature 313.1.3 The Lobatto Quadrature 323.2 Grid Generation 333.3 The Boundary Integral Method 363.3.1 Discrete Non-Smooth Boundary Model 373.3.2 Discrete Smooth Boundary Model 453.4 Numerical Implementation 493.4.1 Analysis the Relative Source Point p and Field Point q on Surface 503.4.2 Dirichlet Boundary Condition 673.4.2.1 Spheroid Model 683.4.2.2 Three Dimensional Rectangle Model 693.4.3 Neumann Boundary Condition 763.4.3.1 Spheroid Model 763.4.3.2 Three Dimensional Rectangle Model 783.4.4 Mix Boundary Condition 843.4.4.1 Spheroid Model 843.4.4.2 Three Dimensional Rectangle Model 863.4.4.3 Contrast between B.E.M and B.I.M 92Chapter 4：Conclusions and Suggestions 97Bibliography 100Appendix A：Error in Three Dimensional Rectangular Model iI. Dirichlet Problem iA. Uniform Grid iB. Non-uniform Grid viII. Neumann Problem xviiiA. Uniform Grid xviiiB. Non-uniform Grid xxivIII. Mix Problem xxxvA. Uniform Grid xxxvB. Non-uniform Grid xliAppendix B：Error in Spheroid Model liiiI. Dirichlet Probleml iiiII. Neumann Problem lviIII. Mix Problem lix
 Hung, L. P., Boundary Integral Method in 2-D Potential Flow Problem, National Taiwan Univ., Taipei, 2000.Jaswon, M. A., “Integral Equation Methods in Potential Theory I”, Proc. Roy. Soc. Lond., Vol. A275, pp.23-32, 1963.Symm, G. T.,” Integral Equation Methods in Potential Theory II”, Proc. Roy. Soc. Lond., Vol. A275, pp.33-46, 1963.Rizzo, F. J., “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics”, Quart. Appl. Math., Vol. 25, pp. 83-95, 1967.Curse, T. A. and Rizzo F. J., “A Direct Formulation and Numerical Solution of the General Transient Elastodynamic Problem I”, J. Math. Anal. App., Vol. 22, pp. 244-259, 1968.Cruse, T. A., “A Direct Formulation and Numerical Solution of the Transient Elastodynamic Problems II”, J. Math. Anal. App., Vol. 22, pp. 341-355, 1968.Symm, G. T., Treatment of Singularities in the Solution of Laplace Equation by An Integral Equation Method, National Physics Laboratory Report No.: NAC31, 1973.Landweber, L. and Macagno, M., Irrotational Flow about Ship Forms, IIHR report, U. of Iowa, No.123, 1969.Hwang, W. S., “Hyper-singular Boundary Integral Equations for Exterior Acoustic Problems”, J. Acoustic Soc. Am., Vol. 101, pp. 3336-3342, 1997.Huang, Y. Y., The Study on Potential Flow by Nonsingular Boundary Element Methods, National Taiwan Univ., Taipei, 1997.Hwang, W. S. and Huang, Y. Y., “Non-singular Direct Formulation of Boundary Integral Equations for Potential Flows”, Int. J. Numer. Mech. Fluids, Vol. 26, pp. 627-635, 1998.Chang, J. M., “Numerical Studies on Desingularized Cauchy’s Formula with Applications to Interior Potential Problems”, Int. J. Numer. Mech. Engng., Vol. 46, pp. 805-824, 1999.Yang, S. A., “On the Singularities of Green’s Formula and Its Normal Derivative with An Application to Surface Wave Body Interaction Problems”, Int. J. Numer. Mech. Engng., Vol. 47, pp. 1841-1864, 2000.Huang, Q. and Cruse, T. A., “Some Notes on Singular Integral Techniques in Boundary Element Analysis”, Int. J. Numer. Meth. Engng., Vol. 36, pp. 2643-2659, 1993.Johnston, P. R., “Semi-sigmoidal Transformations for Evaluation Weakly Singular Boundary Element Integrals”, Int. J. Numer. Mech. Engng., Vol. 4, pp.1709-1730, 2000.Johnston, P. R. and Elliott, D., “Error Estimation of Quadrature Rules for Evaluating Singular Integrals in Boundary Element Problems”, Int. J. Numer. Meth. Engng., Vol. 48, pp. 949-962, 2000.Ko, C. H., Numerical Simulation of Three Dimensional Water Sloshing Problems Using Boundary Element Methods, National Taiwan Univ., Taipei, 1998.Hwang, W. S., “A Boundary Node Method for Airfoils Based on the Dirichlet Condition”, Comput. Meth. Appl. Mech. Engng., Vol. 190, pp. 1679-1688, 2000.Lutz, E. D., “Systematic Derivation of Contour Integration Formulae for Laplace and Elastostatic Gradient BIE’s”, Comput. Mech., Vol. 14, pp.339-353, 1994.Hwang, W. S., Study Note.Whittaker, E. T. and Robinson, G., The Newton-Cotes Formulae of Integration, §76 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed., Dover, New York, pp. 152-156, 1967.Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill, New York, pp. 323-325, 1956.Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, pp.888-890, 1972.
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 多連通赫姆茲問題邊界積分推導與邊界元素法分析 2 非對稱複材疊層板邊界元素之奇異積分探討 3 邊界元素法之三維異向材料內部應變/應力分析 4 非對稱複材疊層板之邊界元素設計 5 期後誤差估計之通用架構

 1 王千倖（1996）。電腦與教學。教育實習輔導，2（1），37-39。 2 蘇諼（1995）。讀者研究的趨勢。 中國圖書館學會會報，55，51-55。 3 韓善民（1997）。資訊教育基礎建設簡介。資訊與教育，61，2-7。 4 溫明正（1995）。電腦教育解析。教育資料與研究，3。國立教育資料館。 5 尹玫君（2000）。國民小學老師的網路教學素養與培育。資訊與教育雜誌，79，13-19。 6 黃韻寧（1993）。台灣省國民小學電腦應用教學實況。資訊與教育，8，46-48。 7 陳文進（2000）。我國資訊教育之演進與未來發展。資訊與教育，80，78-88。 8 唐文華（1996）：如何推動小學資訊教育及行政電腦化。新竹師院學報，9，229-240。 9 高錦雪（1999）。由「技術」與「素養」談大學圖書館的使用者服務：由一個研討會的論文及討論說起。大學圖書館，3（3），4-10。 10 呂春嬌（民86）。「圖書館在資訊素養教育中角色與職責」。國立臺灣師範大學圖書館通訊，27 ，頁2-5。

 1 三維機翼尾端跡流之研究 2 小鼠巨噬細胞表面組織胞漿菌受器之研究 3 利用最小方差法對二維翼型之跡流定位 4 以場效可程式閘陣列實現肌電圖辨識系統 5 TCP在可移動網路上之效能分析 6 IEEE802.16無線都會網路上之TCP效能研究 7 利用位元域互斥或運算降低OFDM系統之峰均比 8 高功率穩態單模面射型雷射 9 氣象衛星影像應用於雨量即時預報系統之研發 10 點對點式影音串流系統之開發與實作 11 以酵母菌雙雜合系統篩選阿拉伯芥中與AtMAPRs有交互作用之蛋白質 12 東亞奇蹟或危機─發展國家與新古典理論的爭辯 13 產品組合對平行機台工作分派效率之影響 14 冠狀動脈三維重建之初步架構 15 邊界元素法對二維翼型之流場分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室