跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林家華
研究生(外文):Chia-Hua Lin
論文名稱:香蕉萎縮病毒輕微病徵型系統之基因體研究
論文名稱(外文):Genome characterization of the mild strain of Banana bunchy top babuvirus
指導教授:葉信宏葉信宏引用關係
指導教授(外文):Hsin-Hung Yeh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理與微生物學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:257
中文關鍵詞:香蕉萎縮病毒輕微病徵型系統基因體
外文關鍵詞:Banana bunchy top virusmild straingenome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
香蕉萎縮病是由香蕉萎縮病毒(Banana bunchy top babuvirus, BBTV)所引
起,受害香蕉會產生植株萎縮、葉脈透化、葉片萎黃細小並叢集於株頂、中肋與
葉柄處顯現濃綠色條斑,甚至不結果等病徵。BBTV 為多基因體之單股環狀DNA
病毒,目前已發現其基因體至少包含六條約1.1 kb 的DNA components,分別為
DNA 1 ~ 6,其中DNA 1 為負責病毒複製的master replication initiation protein
(master Rep);而在某些香蕉病株上尚可分離出能夠自行複製約1.1 kb 的additional
Rep-encoding components。根據香蕉寄主上病徵型之不同可將BBTV 區分為五種
系統(type I ~ V),而此五種系統亦可利用三對保守性引子對-C1, S 與SR 進行
PCR 檢測之結果加以鑑定區分。其中type V 之病徵型為輕微型系統(mild strain),
目前僅在台灣被報導,但其基因體組成尚未被完整研究,因此本論文針對此分離
株之基因體組成,利用保守性與專一性引子對,對其總核酸進行PCR 反應,增
幅出可能存在之基因體並建構其PCR library,再以restriction fragment length
polymorphism (RFLP)分析之結果進一步對選殖株進行分群,並將不同RFLP 群進
行定序及序列分析。由結果顯示自type V 分離株V-1 與V-2 中均可得到DNA 1 ~
5,卻無法找到DNA 6。然而以南方墨點分析無法由此二分離株之總核酸中偵測
到DNA 3 與DNA 6 專一性探針之訊號,顯示輕微病徵型統分離株之BBTV 基因
體含量可能甚低,故無法以南方墨點分析偵測。以即時定量聚合酶連鎖反應
(real-time PCR)偵測DNA 1 與DNA 3 之結果顯示,輕微病徵型系統分離株之DNA
1 與DNA 3 含量較嚴重型病徵型系統分離株低1000 倍以上,因此推測type V 可
能缺少DNA 6、其序列與已知之DNA 6 相似度太低或是其含量甚少,無法以現
有之方法偵測到。相較於其他BBTV 系統,type V 具有約0.5 Kb 的S 引子對之
PCR 產物,經由選殖與定序分析得知其在V-1 與V-2 二分離株中均為defective
master Rep,並可依其序列與基因體結構再區分為五群,由免疫捕捉PCR
(Immunocapture PCR)之結果推測這些defective master Rep 能夠被病毒鞘蛋白包
被;此外在V-2 分離株中則可另外發現一約0.7 Kb 之defective master Rep 存在。
然而DNA 6 之不存在或是defective Rep 之存有是否可能影響BBTV type V 之病
徵抑制,尚待進一步的研究確定。
The causal agent of Banana bunchy top disease is Banana bunchy top babuvirus
(BBTV). The BBTV-infected banana plants show symptoms of dwarf, bunchy top,
leaf atrophy, vein clearing, dark-green streak on pseudostem, and were unable to
produce fruits in severe cases. BBTV is a complex circular single-stranded DNA
virus consist of six genomic integral components, DNA 1 ~ 6. DNA 1 encodes
master replication initiation protein (master Rep) for viral genomic replication.
Besides master Rep, components encode additional replication initiation protein
(additional Rep) with the self-only-replication function could also be isolated from
some BBTV-infected banana plants. BBTV strains can be classified into five types,
type I ~ V, defined by symptoms, and could be differentiated by polymerase chain
reaction (PCR)-based assay using C1, S and SR primer pairs. Type V is a mild strain,
and its complete genome organization has yet been characterized. In this study,
primer pairs based on conserved and specific regions of BBTV components were
designed. The designed primer pairs and total nucleic acids extracted from each type
V isolate was used in PCR reaction. The PCR products were cloned to construct
PCR-libraries. Clones from each PCR-library were analyzed by restriction fragment
length polymorphisms (RFLP). Randomly selected clones from each RFLP group
were sequenced. Based on result of analysis, five integral components, DNA 1 ~ 5,
were identified from isolates of type V, V-1 and V-2. However we were unable to
obtain DNA 6 from both isolates even two primer pairs designed from DNA 6
conserved region. No signal could be detected from total nucleic acids extracted of
V-1 or V-2 isolates by Southern blot analysis using DNA 6 open reading frame as
probes. However we were also unable to detect DNAs in the nucleic acids by
Southern blot analysis. It indicates that the amounts of BBTV genomic DNA are
much lower in the mild strains. Real-time quantitative PCR were performed to
quantify the amounts of DNA 1 and DNA 3. The result indicated the amount of
DNA 1 and DNA 3 in mild strain isolates were fewer than in severe strain isolates by
more than 1000 folds. These data suggest that DNA 6 was absent or had some
sequence changes in mild strain. Besides, mild strain had a ca. 0.5 kb PCR product
amplified by S primer pairs. After cloning and sequencing of these fragments, we
found that they are defective forms of master Reps, and they could be classified into
five subgroups by sequence homologies and genome organizations. The result of
immunocapture PCR suggests these defective Reps are incapsidated. In addition to
the 0.5 kb defective master Reps, another 0.7 kb defective master Rep could also be
identified from V-2 isolate. Further studies are needed to resolve if the absence of
ordinary DNA 6 and/or the presence of defective Rep could account for symptoms
amelioration of mild strain virus infection.
中文摘要........................................................................................................................1
英文摘要........................................................................................................................3
壹、緒論........................................................................................................................5
貳、前人研究..................................................................................................................8
一、香蕉萎縮病之發生歷史與地理分布................................................................8
二、香蕉萎縮病之病原探討....................................................................................9
三、香蕉萎縮病之病徵紀錄.................................................................................10
四、香蕉萎縮病之傳播途徑與發病生態..............................................................11
五、香蕉萎縮病毒基因體之研究..........................................................................12
六、香蕉萎縮病毒病徵系統之分群......................................................................22
參、材料與方法............................................................................................................25
一、健康與罹病香蕉之來源..................................................................................25
二、輕微與嚴重分離株之病徵紀錄......................................................................25
三、病毒分離株之分子特性鑑定..........................................................................25
(一)酵素連結免疫吸附分析(Enzyme-linked immunosorbent assay, ELISA)...
.................................................................................................................26
(二)香蕉總核酸之抽取...................................................................................27
(三)聚合酶連鎖反應 (Polymerase chain reaction, PCR)...............................27
(四)洋菜膠體電泳分析(Electrophoresis analysis)......................................... 27
四、輕微病徵系統之基因體選殖、分群與定序..................................................28
(一)聚合酶連鎖反應.......................................................................................29
(二)連合反應(Ligation).................................................................................. 29
(三)大腸桿菌Top10F’與XL1-Blue勝任細胞之製備.....................................29
(四)大腸桿菌Top10F’與XL1-Blue 勝任細胞之轉形....................................30
(五)菌落聚合酶連鎖反應(Colony PCR)........................................................30
(六)限制片段長度多型性分析(Restriction fragment length polymorphism,
RFLP).........................................................................................................31
(七)質體少量製備(Mini-prep)........................................................................31
(八)DNA定序..................................................................................................32
(九)DNA與所預測胺基酸序列之分析..........................................................32
五、以南方墨點分析(Southern blot analysis)偵測BBTV基因體.........................33
(一)探針之製備...............................................................................................33
(二)核酸之雜合與轉漬...................................................................................34
(三)雜合訊息之偵測.......................................................................................35
六、以即時絕對定量聚合酶連鎖反應偵測各病徵型分離株基因體含量..........36
七、以IC-PCR 檢測BBTV基因體是否為鞘蛋白所包被....................................37
肆、結果........................................................................................................................39
一、BBTV 嚴重與輕微病徵型系統之病徵差異比較...........................................40
二、各BBTV 病徵型系統之分子特徵差異比較..................................................40
(一)酵素連結免疫吸附分析(ELISA).............................................................40
(二)聚合酶連鎖反應(PCR).............................................................................40
三、BBTV 輕微病徵型系統基因體之選殖...........................................................41
(一) Integral components 之選殖.....................................................................41
1. 以C1 引子對進行integral component 之選殖................................41
2. 以S 引子對進行integral component 之選殖...................................42
3. 以DNA 2 專一性引子對進行DNA 2 之選殖.................................42
4. 以DNA 6 專一性引子對進行DNA 6 之選殖.................................42
5. 基因體與序列分析所用integral component 之選擇......................43
(二) Defective Rep 之選殖...............................................................................43
1. 0.5 kb defective Rep 之選殖............................................................43
2. 基因體與序列分析所用0.5 kb defective Rep 之選擇....................43
3. 0.7 kb defective Rep 之選殖............................................................44
4. 基因體與序列分析所用0.7 kb defective Rep 之選擇....................44
(三) Additional Rep 之選殖與分群.................................................................44
1. 以SR引子對進行additional Rep 之選殖........................................45
2. 以S1 引子對進行additional Rep 之選殖......................................45
3. 以S2 引子對進行additional Rep 之選殖........................................46
4. 以S3 引子對進行additional Rep 之選殖........................................46
5. 以Y引子對進行additional Rep 之選殖..........................................46
6. 基因體與序列分析所用additional Rep 之選擇.............................47
四、BBTV 輕微病徵型系統基因體之分析...........................................................47
(一) Integral component 部分...........................................................................47
1. 台灣各病徵型分離株間之親緣演化分析......................................47
2. DNA 1 之序列與親緣演化分析.....................................................48
3. DNA 2 之序列與親緣演化分析......................................................49
4. DNA 3 之序列與親緣演化分析......................................................49
5. DNA 4 之序列與親緣演化分析......................................................50
6. DNA 5 之序列與親緣演化分析......................................................51
7. V-1 與V-2 分離株之CR-SL序列分析與二級結構比較................52
8. V-1 與V-2 分離株之CR-M序列分析..............................................52
(二) Defective Rep 部分...................................................................................53
1. 0.5 kb Defective Rep 之序列、基因體結構與親源演化分析.........53
2. 0.7 kb Defective Rep 之序列與基因體結構分析...........................55
3. Defective Rep 之CR-SL 序列分析與二級結構預測......................56
4. Defective Rep 之CR-M序列分析...................................................57
(三) Additional Rep-encoding component 部分...............................................57
1. Additional Rep 之核苷酸序列分析與核苷酸親源演化分析.........57
2. Additional Rep 之胺基酸序列分析與胺基酸親源演化分析.........58
五、以南方墨點分析偵測BBTV 基因體..............................................................58
六、以即時定量聚合酶連鎖反應偵測BBTV 基因體含量..................................59
(一) DNA 1 之絕對定量..................................................................................60
(二) DNA 3 之絕對定量..................................................................................60
(三)各病徵型系統分離株之DNA 1 與DNA 3 含量比較..............................61
七、以免疫捕捉聚合酶連鎖反應偵測鞘蛋白所包被之BBTV 基因體..............61
伍、討論........................................................................................................................63
陸、圖表........................................................................................................................74
表一、聚合酶連鎖反應所用引子之相關資訊......................................................74
表二、序列分析所用BBTV integral components 之相關資訊.............................76
表三、進行序列分析所用BBTV additional components 之相關資訊.................78
表四、BBTV分離株type II-8、V-1 與V-2 於北蕉之病徵表現.............................79
表五、使用單元抗體2H6 以直接酵素連結免疫吸附分析法測定各BBTV 分離
株中病毒顆粒含量....................................................................................80
表六、BBTV V-1 與V-2 分離株之integral components 組成,核苷酸與預測之
胺基酸長度................................................................................................81
表七、各BBTV分離株間DNA 1 核苷酸序列全長成對比較..............................82
表八、各BBTV分離株間DNA 1 胺基酸序列全長成對比較..............................84
表九、各BBTV分離株間DNA 2 核苷酸序列全長成對比較..............................86
表十、各BBTV分離株間DNA 2 胺基酸序列全長成對比較..............................87
表十一、各BBTV分離株間DNA 3 核苷酸序列全長成對比較..........................88
表十二、各BBTV分離株間DNA 3 胺基酸序列全長成對比較..........................90
表十三、各BBTV分離株間DNA 4 核苷酸序列全長成對比較..........................92
表十四、各BBTV分離株間DNA 4 胺基酸序列全長成對比較..........................93
表十五、各BBTV分離株間DNA 5 核苷酸序列全長成對比較..........................94
表十六、各BBTV分離株間DNA 5 胺基酸序列全長成對比較..........................95
表十七、BBTV V-1、V-2、MTC1 與MTC2 分離株之defective replication initiation
proteins (Rep) 組成與核苷酸長度..............................................96
表十八、各BBTV 輕微病徵型系統分離株間defective Rep 核苷酸序列全長成
對比較....................................................................................................97
表十九、BBTV V-1 與V-2 分離株之additional Rep 組成,核苷酸與預測之胺
基酸長度................................................................................................99
表二十、各BBTV分離株間additional Rep 核苷酸序列全長成對比較............100
表二十一、各BBTV分離株間additional Rep 胺基酸序列全長成對比較........103
表二十二、以即時定量聚合酶連鎖反應偵測BBTV V-1 與V-2 分離株DNA
1 之含量...........................................................................................107
表二十二、以即時定量聚合酶連鎖反應偵測BBTV V-1 與V-2 分離株DNA
3 之含量...........................................................................................108
圖一、嚴重型與輕微型系統分離株之矮化與束頂病徵差異............................109
圖二、嚴重型與輕微型系統分離株葉脈透化程度之病徵表現差異................110
圖三、嚴重型與輕微型系統分離株假莖出現深綠色條斑之病徵表現差異....111
圖四、以C1、S 與SR 引子對或S1、S2、S3 與Y 專一性引子對,對各
BBTV 分離株總核酸進行聚合酶連鎖反應...........................................112
圖五、BBTV I-1、II-1、IV、V-1 與V-2 分離株之基因體DNA component
全長核苷酸序列親源演化分析..............................................................113
圖六、BBTV I-1、II-1、IV、V-1 與V-2 分離株之基因體DNA component
全長胺基酸序列親源演化分析..............................................................114
圖七、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 1 選殖株核苷酸
序列全長排比..........................................................................................115
圖八、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 1 選殖株胺基酸
序列全長排比..........................................................................................118
圖九、BBTV DNA 1全長核苷酸序列親源演化分析........................................119
圖十、BBTV DNA 1全長胺基酸序列親源演化分析........................................120
圖十一、BBTV V-1 分離株之V-1-1b 與V-1-1Hung 核苷酸與胺基酸序列全長
排比.......................................................................................................121
圖十二、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 2 選殖株核苷酸
序列全長排比.......................................................................................123
圖十三、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 2 選殖株胺基酸
序列全長排比.......................................................................................127
圖十四、BBTV DNA 2 全長核苷酸序列親源演化分析....................................128
圖十五、BBTV DNA 2 全長胺基酸序列親源演化分析....................................129
圖十六、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 3 選殖株核苷
酸序列全長排比.............................................................................130
圖十七、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 3 選殖株胺基
酸序列全長排比.............................................................................133
圖十八、BBTV DNA 3 全長核苷酸序列親源演化分析....................................134
圖十九、BBTV DNA 3 全長胺基酸序列親源演化分析....................................135
圖二十、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 4 選殖株核苷酸
序列全長排比.................................................................................136
圖二十一、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 4 選殖株胺基
酸序列全長排比.............................................................................138
圖二十二、BBTV V-1-4、V-2-4、I-1-4 與II-1-4 之transmembrane domain
之預測圖.........................................................................................139
圖二十三、BBTV DNA 4 全長核苷酸序列親源演化分析................................140
圖二十四、BBTV DNA 4 全長胺基酸序列親源演化分析................................141
圖二十五、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 5 選殖株核苷
酸序列全長排比.............................................................................142
圖二十六、BBTV I-1、II-1、IV、V-1 與V-2 分離株之DNA 5 選殖株胺基
酸序列全長排比.............................................................................144
圖二十七、BBTV DNA 5 全長核苷酸序列親源演化分析................................145
圖二十八、BBTV DNA 5 全長胺基酸序列親源演化分析................................146
圖二十九、BBTV V-1、V-2、MTC1與MTC2分離株基因體內DNA components
於stem-loop common region (CR-SL)之核苷酸序列排比...........147
圖三十、BBTV V-1 分離株CR-SL之二級結構預測..........................................148
圖三十一、BBTV V-2 分離株CR-SL之二級結構預測......................................150
圖三十二、BBTV V-1 分離株基因體之DNA components 於major common
region (CR-M)核苷酸序列排比........................................................152
圖三十三、BBTV V-2 分離株基因體之DNA components 於major common
region (CR-M)核苷酸序列排比..........................................................153
圖三十四、BBTV V-1、V-2、MTC1 與MTC2 分離株之defective Rep 選殖株
苷酸序列排比.................................................................................154
圖三十五、BBTV 0.5 kb defective Reps 基因體結構.........................................159
圖三十六、BBTV V-1、V-2、MTC1 與MTC2 分離株中defective Rep 選殖株
全長核苷酸序列親源演化分析........................................................161
圖三十七、BBTV V-2 分離株中V-2-7Da 與V-2-7Db 之基因體結構...............162
圖三十八、BBTV MTC1 分離株CR-SL之二級結構預測.................................163
圖三十九、BBTV MTC2 分離株CR-SL之二級結構預測.................................164
圖四十、BBTV MTC1 分離株基因體之DNA components 於major common
region (CR-M)核苷酸序列排比..........................................................165
圖四十一、BBTV MTC2 分離株基因體之DNA components 於major common
region (CR-M)核苷酸序列排比..........................................................166
圖四十二、BBTV additional Rep 全長核苷酸序列親源演化分析....................167
圖四十三、BBTV additional Rep 全長胺基酸序列親源演化分析....................168
圖四十四、以南方雜合分析偵測BBTV II-8、IV、V-1 與V-2 分離株之總
核酸.................................................................................................169
圖四十五、以DNA 1-Q 與DNA 3-Q 引子對增幅的PCR 產物之核苷酸序列
.........................................................................................................170
圖四十六、Ct 值與BBTV DNA 1 與DNA 3 質體倍率稀釋之線性關係圖
.........................................................................................................171
圖四十七、以DNA 1-Q、DNA3-Q 與Musa Radka4 引子對,對各BBTV 分離
株總核酸進行聚合酶連鎖反應.....................................................172
圖四十八、BBTV 罹病株與健康Cavendish 香蕉樣品之擴增曲線圖與解離曲
線圖.................................................................................................173
圖四十九、BBTV 罹病株與健康Cavendish 香蕉樣品之擴增曲線圖與解離曲
線圖.................................................................................................175
圖五十、以C1、S 與SR 引子對對各BBTV 分離株總核酸進行免疫捕捉聚合
酶連鎖反應........................................................................................177
柒、參考文獻..............................................................................................................178
捌、附錄......................................................................................................................183
附錄一、V-1 分離株之C1 基因體庫....................................................................183
附錄二、V-2 分離株之C1 基因體庫....................................................................188
附錄三、V-1 分離株之S 基因體庫......................................................................191
附錄四、V-2 分離株之S 基因體庫......................................................................198
附錄五、V-1 分離株之D2 基因體庫....................................................................205
附錄六、V-2 分離株之D2 基因體庫....................................................................208
附錄七、V-1 分離株之S5 基因體庫....................................................................213
附錄八、V-2 分離株之S5 基因體庫....................................................................220
附錄九、MTC1 分離株之S5 基因體庫................................................................223
附錄十、MTC2 分離株之S5 基因體庫................................................................227
附錄十一、V-2 分離株之S7 基因體庫................................................................233
附錄十二、V-1 分離株之SR基因體庫................................................................236
附錄十三、V-2 分離株之SR基因體庫................................................................240
附錄十四、V-2 分離株之S1 基因體庫................................................................242
附錄十五、V-2 分離株之S2 基因體庫................................................................244
附錄十六、V-2 分離株之S2 基因體庫................................................................249
附錄十七、V-1 分離株之Y基因體庫..................................................................253
附錄十八、V-2 分離株之Y基因體庫..................................................................255
康麗莉。1984。香蕉萎縮病病因之探討。國立台灣大學植物病蟲害學研究所碩士論文,
台北,台灣。
鍾瑜。1989。香蕉萎縮病毒之發生生態硏究:病毒系統,中間寄主及蚜蟲傳播。國立
台灣大學植物病蟲害學研究所碩士論文,台北,台灣。
曹麗玉。1998。香蕉萎縮病毒系統之生物學與分子生物特性及其生態。國立台灣大學
植物病蟲害學研究所碩士論文,台北,台灣。
吳瑞鈺。1987。香蕉萎縮病病毒之特性及單元抗體。國立台灣大學植物病蟲害學研究
所碩士論文,台北,台灣。
Allen, R. N. 1987. Further studies on epidemiological factors influencing control of banana
bunchy top disease, and evaluation of control measures by computer simulation. Aus.
J. Agric. Res. 38: 373-382.
Altschul, S. F., Madden, L. T., Schäfer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman,
D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25: 3389-3402.
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and
Struhl, K. (ed.) 1995. Current protocols in molecular biology. John Wiley & Sons, Inc.
USA.
Beetham, P. R., Hafner, G. J., Harding, R. M. and Dale, J. L. 1997. Two mRNAs
are transcribed from banana bunchy top virus DNA-1. J. Gen. Virol. 78: 229-236.
Bell, K. E., Dale, J. L., Ha, C. V., Vu, M. T. and Revill, P. A. 2002. Characterization of
Rep-encoding components associated with banana bunchy top Nanovirus in Vietnam.
Arch. Virol. 147: 695-707.
Burns, T. M., Harding, R. M. and Dale, J. L. 1994. Evidence that banana bunchy top virus
has a multiple component genome. Arch. Virol. 137: 371-380.
Burns, T. M., Harding, R. M. and Dale, J. L. 1995. The genome organization of banana
bunchy top virus: analysis of six ssDNA components. J. Gen. Virol. 76: 1471-1482.
Dale, J. L., Phillips, D. A. and Parry, J. N. 1986. Double-stranded RNA in banana plants
with bunchy top disease. J. Gen. Virol. 67: 371-375.
Dale, J. L. 1987. Banana bunchy top: an economically important tropical plant
virus disease. Adv. Virus Res. 33: 301-325.
Darnell-Smith, G. P. 1924. "Bunchy top" disease in banana. Queensl. Agric. J. 21: 169-179.
De Langhe, E. 1995. Banana and Plantain: The earliest fruit crops? INIBAP Annual Report
1995, pages 6–8. INIBAP, Montpellier, France.
Dugdale, B., Becker, D. K., Harding, R. M. and Dale, J. L. 1998. Promoter activity
associated with the intergenic regions of banana bunchy top virus DNA-1 to -6 in
transgenic tobacco and banana cells. J. Gen. Virol. 79: 2301-2311.
Felsenstein, J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:
164-166.
Fenoll, C., Schwarz, J. J., Black, D. M., Schneider, M. and Howell, S. H. 1990. The intergenic region of maize streak virus contains a GC-rich element that activates
rightward transcription and binds maize nuclear factors. Plant Mol. Biol. 15: 865-877.
Furuya, N., Kawano, S. and Natsuaki, K. T. 2005. Characterization and genetic status of
Banana bunchy top virus isolated from Okinawa, Japan. J. Gen. Plant Pathol. 71:
68-73.
Gronenborn B. 2004. Nanoviruses: genome organisation and protein function. Vet
Microbiol. 98:103-9.
Grafi, G. R., Burnett, R. J., Helentjaris, T., Larkins, B. A., DeCaprio, J. A., Sellers, W. R.
and Kaelin, W. G. 1996. A maize cDNA encoding a member of the retinoblastoma
protein family: involvement in endoduplication. Proc. Natl. Acad. Sci. USA 93:
8962-8967.
Hafner, G. J., Stafford, M. R., Wolter, L. C., Harding, R. M. and Dale, J. L. 1997. Nicking
and joining activity of banana bunchy top virus replication protein in vitro. J. Gen.
Virol. 78: 1795-1799.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and
analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95-98
Harding, R. M., Burns, T. M. and Dale, J. L. 1991. Virus-like particles associated
with banana bunchy top disease contain small single-stranded DNA. J. Gen. Virol. 72:
225-230.
Harding, R. M., Burns, T. M., Hafner, G., Dietzgen, R. G. and Dale, J. L. 1993.
Nucleotide sequence of one component of the banana bunchy to virus genome
contains a putative replicase gene. J. Gen. Virol. 74: 323-328.
He, Z. F., Li, H. P., Xiao, H. G. and Fan, H. Z. 2000. Cloning and sequencing of DNA
component 1 of two BBTV strains. Chih Wu Ping Li Hsueh Pao 30: 364-369.
He, Z. F., Li, H. P., Xiao, H. G. and Fan, H. Z. 2001. Cloning and sequencing of DNA
component 3 of two BBTV strains. Nongye Shengwu Jishu Xuebao 9: 145-148.
He, Z. F., Li, H. P., Xiao, H. G. and Fan, H. Z. 2001. Cloning and sequencing of DNA
component 6 of two BBTV strains. Hua Nan Nung Yeh Ta Hsueh Hsueh Pao 22 :
33-36
Hofmann, K. and Stoffel, W. 1993. TMbase - A database of membrane spanning proteins
segments. Biol. Chem. Hoppe-Seyler 374: 166.
Horser, C. L., Harding, R. M. and Dale, J. L. 2001a. Banana bunchy top Nanovirus DNA-1
encodes the ''master'' replication initiation protein. J. Gen. Virol. 82: 459-464.
Horser, C. J., Karan, M., Harding, R. M. and Dale, J. L. 2001b. Additional Rep-encoding
DNAs associated with banana bunchy top virus. Arch. Virol. 146: 71-86.
Huang, X. and Miller, W. 1991. A time-efficient, linear-space local similarity algorithm.
Adv. Appl. Math. 12: 337-357.
Hussain M, Mansoor S, Iram S, Fatima AN, Zafar Y. 2005. The nuclear shuttle protein of
Tomato leaf curl New Delhi virus is a pathogenicity determinant. J. Virol. 79:
4434-9.
Ingham, D. J., Pascal, E. and Lazarowitz, S. G. 1995. Both bipartite geminivirus movement
proteins define viral host range, but only BL1 determines viral pathogenicity. Virology 207: 191-204.
International Network for the Improvement of Banana and Plantain (INIBAP). 2000.
Networking Banana and Plantain –INIBAP Annual Report 2000. INIBAP. Montpellier,
France.
Jones, D., Taylor, W. and Thornton, J. 1992. The rapid generation of mutation data
matrices from protein sequences. CABIOS 8: 275-282.
Karan, M., Harding, R. M. & Dale, J. L. 1994. Evidence for two groups of banana bunchy
top virus isolates. J. Gen. Virol. 75: 3541-3546.
Karan, M., Harding, R. M. & Dale, J. L. 1997. Association of banana bunchy top virus
DNA components 2 to 6 with banana bunchy top disease. Molecular Plant Pathology
On-line. [http://www.bspp.org.uk/mppol/1997/0624karan]
La, P., Cai, W. Q. and Fang, R. X. 2001. Cloning and characterization of BBTV component
I. Bing Du Xue Bao. In press.
Laughlin, C., W. 1997. Banana Bunchy Top Virus. College of Tropical Agriculture and
Human Resources, University of Hawaii, and issued in furtherance of Cooperative
Extension work. [http://www2.ctahr.hawaii.edu/oc/freepubs/pdf/PD-12.pdf]
Liu, Y. T. 2005. Genome characterization of strains of banana bunchy top virus. Master
thesis of National Taiwan University Graduate Institute of Plant Pathology and
Microbiology, Taipei, Taiwan.
Magee, C. J. P. 1927. Investigation on the bunchy top disease of the banana, pp. 86.
Melbourne: Council for Scientific and Industrial Research.
Magnaye, L. V. and Valmayor, R. V. 1995. BBTV, CMV AND OTHER VIRUSES
AFFECTING BANANA IN ASIA AND THE PACIFIC. Bureau of Plant Industry,
Davao, Philippines. INIBAP Asia and the Pacific Network, c/o PCARRD, Los Baños,
Laguna, Philippines.
Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M. and Turner, D. H.
2004. Incorporating chemical modification constraints into a dynamic programming
algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101:
7287-7292.
Matthews, R.E.F. 1979. Classification and nomenclature of viruses: Third report of the
International Committee on Taxonomy of Viruses. Intervirology 12: 129-296.
Milanesi, L., Muselli, M. and Arrigo, P. 1996. Hamming-Clustering method for signals
prediction in 5'' and 3'' regions of eukaryotic genes. Comput. Appl. Biosci. 12: 399-404.
Nicholas, K. B., Nicholas, H. B. Jr., and Deerfield, D. W. II. 1997. GeneDoc: Analysis and
Visualization of Genetic Variation. EMBNEW. NEWS 4: 14.
Noueiry, A. O., Lucan, W. J. and Gilbertson, R. L. 1994. Two proteins of a plant DNA
virus coordinate nuclear and plasmodesmatal transport. Cell 76: 925-932.
Padidam M, Beachy RN, Fauquet CM. 1995. Classification and identification of
geminiviruses using sequence comparisons. J. Gen. Virol. 76: 249-63.
Palanichelvam K., Kunik T., Citovsky V. and Gafni Y. 1998. The capsid protein of tomato
yellow leaf curl virus binds cooperatively to single-stranded DNA. J. Gen. Virol. 79:
2829-33.
Qin S., Ward B. M., Lazarowitz S. G. 1998. The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J. Virol. 72: 9247-56.
van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. M., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R. and Wickner, R. B. (ed.) 2000. Virus taxonomy: seventh report of the international committee on taxonomy of viruses. A Harcourt Science and Technology Com. Academic Press.
Page, R. D. M. 1996. TreeView: an application to display phylogenetic trees on personal computers. CABIOS 12: 357-358.
Sanderfoot, A. A. and Lazarowitz, S. G. 1995. Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7: 1185-1194.
Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. and Evol. 4: 406-425.
Smith, M. C., Holt, J., Kenyon, L. and Foot, C. 1998. Quantitative epidemiology of banana bunchy top virus disease and its control. Plant Pathol. 47: 177-187.
Soomro, M. H., S. Khalid and Aslam, M. 1992. Outbreak of banana bunchy top virus in Sindh, Pakistan. FAO Plant Protection Bulletin 40: 95-99.
Su, H. J., Tsao, L. Y., Wu, M. L. and Hung, T. H. 1998. Pathological and molecular characterization of Banana bunchy top virus (BBTV) strains in Asia. In Managing banana and citrus diseases, pp. 79-85. Edited by Molina, A. B., Roa, V. N., Bay-Petersen, J., Carpio,, A. T. and Joven, J. E. A., Philippines: International Network for the Improvement of Banana and Plantain/ASPNET.
Su, H.-J., Tsao, L.-Y., Wu, M.-L. and Hung, T.-H. 2003. Biological and molecular categorization of strains of Banana bunchy top virus. J. Phytopathol. 151: 290-296.
Su, H. J., Wu, R. Y. and Tsao, L. Y. 1993. Ecology of banana bunchy-top virus disease. In “Proceedings: International Symposium on Recent Developments in Banana Cultivation Technology, Chiuju, Pingtung, Taiwan, 14-18 December 1992”.Valmayor, R.V., Hwang, S.C., Ploetz, R., Lee, S.W. and Roa, N.V. (Eds) INIBAP/ASPNET: Laguna, Philippines. pp 162-171.
Sun, S.-K. 1961. Studies on the bunchy top diseases of bananas. Spec. Publ. Coll. Agric. Natl. Taiwan Univ. 10: 82-109.
Thomas, J. E. and Dietzgen, R. G. 1991. Purification, characterization and serological detection of virus-like particles associated with banana bunchy top disease in Australia. Journal of General Virology 72, 217-224.
Thomas, J. E., Iskra-Caruana, M.-L. and Jones, D. R. 1994. Banana bunchy top disease. Musa Disease Fact Sheet 2, International Network for the Improvement of Banana and Plantain.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24: 4876-4882.
Timchenko, T., Katul, L., Sano, Y., de Kouchkovsky, F., Vetten, H. J. and Gronenborn B. 2000. The master rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology 15: 189-95.
Tsao, L.Y., Hung, T. H. and Su, H. J. 1997. Differentiation of banana bunchy top virus (BBTV) strains by polymerase chain reaction (PCR) analysis with different primer pairs (abstract). Plant Pathol. Bull. 6: 217.
Wardlaw, C. W. 1972. Banana disease : including plantains and abaca. Second Edition, Longman Group Ld., London
Wanitchakorn, R., Harding, R. M. and Dale, J. L. 1997. Banana bunchy top virus DNA-3 encodes the viral coat protein. Arch. Virol. 142: 1673-1680.
Wanitchakorn, R., Hafner, G. J., Harding, R. M. and Dale, J. L. 2000. Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J. Gen. Virol. 81: 299-306.
Wu, R. Y. and Su, H. J. 1990a. Purification and characterization of banana bunchy top virus. J. Phytopathol. 128: 153-160.
Wu, R. Y. and Su, H. J. 1990b. Production of monoclonal antibodies against banana bunchy top virus and their use in enzyme linked immunosorbent assay. J. Phytopathol. 128: 203-208.
Wu, R. Y. and Su, H. J. 1991. Regeneration of healthy banana plantlets from banana bunchy top virus-infected tissues cultured at high temperature. Plant Pathology 40, 4-7.
Wu, R. Y. and Su, H. J. 1992. Detection of banana bunchy top virus in disease
and symptomless banana plants with monoclonal antibody. Trop. Agric. 69: 397-399.
Wu P. J. and Zhou X. P. 2005. Interaction between a nanovirus-like component and the Tobacco curly shoot virus/satellite complex. Acta Biochim Biophys Sin (Shanghai) 37: 25-31.
Wu, R. Y., You, L. R. and Soong, T. S. 1994. Nucleotide sequences of two circular single-stranded DNAs associated with Banana bunchy top virus. Phytopathology 84: 952-958.
Xie, W. S. and Hu, J. S. 1995. Molecular cloning, sequence analysis, and detection of banana bunchy top virus in Hawaii. Phytopathology 85: 339-347.
Yeh, H. H., Su, H. J. and Chao, Y. C. 1994. Genome characterization and identification of viral-associated dsDNA component of Banana bunchy top virus. Virology 198: 645-652.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 孫志麟(民83)。如何增進教師的自我效能。諮商與輔導,106,16-20。
2. 高博銓(民92)。知識經濟與教學革新。課程與教學季刊,6(2),49-68。
3. 史美奐(民93)。教師創新教學的類型與可能。課程與教學季刊,7(1),1-14。
4. 高強華(民91)。論主題統整與教學創新設計。臺灣教育,614,9-15。
5. [5]洪嘉永、管倖生、楊岳(1998),顯示在彩色螢幕上之HLS主要色相柵欄的色彩同化現象,成功大學學報,33,219-234。
6. 林進材(民87)。教師效能的研究及其在教學上的應用。教育資料文摘,240,134-147。
7. [1]王銘顯(1975),道路交通標誌之視覺反應分析與研究,藝術學報,33。
8. 林天祐(民89)。從知識經濟思維教育人員專業成長與發展。學校行政雙月刊,9,24-27。
9. 吳耀明(民93)。國小教師教學效能之研究:教師自評和學生評鑑比較。屏東師院學報,21,189-216。
10. 吳清山(民91)。創意教學的重要理念與實施策略。臺灣教育,614,2-8。
11. 吳清山(民90)。知識經濟時代的教師多元進修。教師天地,115,4-13。
12. 吳思華(民91)。從製造臺灣走向知識臺灣--「創意、創新與創業」是知識經濟時代的新力量。創業創新育成,5,7-9。
13. 張明輝(民93)。精緻學校經營的策略與執行措施。教師天地,128,9-22。
14. 張振成(民90)。創造思考教學的原則與策略。菁莪季刊,12(4),66-69。
15. 張寶誠(民91)。再談創新。能力雜誌,558,12-13。