( 您好!臺灣時間:2024/07/21 22:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Chuarn-Yu Liu
論文名稱(外文):Expression of galactinol synthase genes of soybean under different abiotic stresses
指導教授(外文):Tsan-Piao Lin
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物遭遇乾燥與低溫等逆境時,會誘導基因表現,產生種種生理與生化變化以適應環境。這些基因產物能避免逆境對植物造成傷害,RFOs(Raffinose Family Oligosaccharides)便是其中之一,其主要代表分子有raffinose與stachyose;因RFOs除在逆境下會累積外,在植物種子發育期間亦會累積,能減輕環境逆境對植物的影響,故被認為參與植物及種子的耐旱性。
Galactinol synthase(GolS),能催化UDP-galactose和myo-inositol生合成galactinol,為RFOs生合成的關鍵酵素。從過去的研究發現豆科植物經低溫處理後其葉子內RFOs會大量生成。本研究目的在探討大豆GolS基因有幾個,是否受不同逆境所誘導。糖類分析顯示大豆植株在缺水的情況下,葉子內會累積galactinol和raffinose,不過並未發現stachyose的累積;至於正常供水的植株則無任何RFOs累積,故可推測galactinol和raffinose參與大豆對乾燥逆境的耐受力。另外也發現在大豆種子發育過程中,RFOs的累積以stachyose為主。本研究從大豆葉子中找出兩個GolS基因(GmGolS 1, GmGolS 2),將大豆植株分別以乾燥、高鹽和低溫等逆境處理,觀察兩個GolS基因的表現;發現在乾燥、低溫和高鹽逆境處理下,GmGolS 2 mRNA在大豆植株各個器官,包含根、莖、葉組織內,其表現量均會受到誘導;而GmGolS 1則只受高鹽逆境誘導,且轉錄物只在大豆植株根部累積。
Gene expression is induced when plant subjected to stresses, like drought and low temperature, and biochemical and physiological responses allow plant to adapt to the environmental stimuli. Raffinose family oligosaccharides (RFOs), for example, stachyose and raffinose, are of the biochemical product induced under stresses. In addition, RFOs also accumulate during seed maturation and participate in the drought tolerance of vegetative part and seeds.
Galactinol synthase (GolS) catalyzes the formation of galactinol from the substrates UDP-galactose and myo-inositol. RFOs accumulation was reported previously under low temperature in legume plants. The purpose of this study is to investigate the gene number of expressed GolS and their expression under different environmental stimuli. Sugar analysis of soybean leaf under drought indicates the accumulation of galactinol and raffinose, but not stachyose. These sugars, however, do not accumulate in the control plants. Accumulation of RFOs, especially stachyose, is also found in developing seeds. We have isolated two GolS genes (GmGolS 2 and GmGolS 2) from soybean leaves. GmGolS 2 is induced in root, stem and leaf under drought, low temperature and high salt, whereas GmGolS 1 is induced only in root under high salt.
目 錄
中文摘要 ----------------------------------------------------------------------- 1
英文摘要 ----------------------------------------------------------------------- 2
前言 ----------------------------------------------------------------------------- 3
材料方法 -----------------------------------------------------------------------10
結果 -----------------------------------------------------------------------------32
圖表 -----------------------------------------------------------------------------37
討論 -----------------------------------------------------------------------------57
參考文獻 -----------------------------------------------------------------------63
陳銘坤、潘素美,(1998)阿拉伯芥表現水稻超氧歧化酶之研究. Pp. 30-33.
Anderson, C.M. and Kohorn, B.D. (2001) Inactivation of Arabidopsis SIP1 leads to reduced levels of sugars and drought tolerance. J. Plant Physiol. 158: 1215-1219.
Ayre, B.G., Blair, J.E. and Turgeon, R. (2003) Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. Plant Physiol. 133: 1229-1239.
Bachmann, M., Matile, P. and Keller, F. (1994) Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Cold acclimation, translocation, sink to source transition: discovery of chain elongation enzyme. Plant Physiol. 105: 1335-1345.
Bentsink, L., Alonso, B.C., Vreugdenhil, D., Tesnier, K., Groot, S.P.C. and Koornneef, M. (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 124: 1595-1604.
Bernal-Lugo, I. and Leopold, A.C. (1995) Seed stability during storage: raffinose content and seed glassy state. Seed Sci. Res. 5: 75-80.
Bianchi, G., Gamba, A., Limiroli, R., Pozzi, N., Elster, R., Salamini, F. and Bartels, D. (1993) The unusual sugar composition in leaves of resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87: 223-226.
Black, M., Corbineau, F., Grzesik, M., Guy, P. and Come, D. (1996) Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance. J. Exp. Bot. 47: 161-169.
Blackman, S.A., Obendorf, R.L. and Leopold, A.C. (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiol. 100: 225-230.
Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to environmental stresses. Plant Cell 7: 1099-1111.
Bray, E.A. (1997) Plant responses to water deficit. Trends Plant Sci. 2: 48-54.
Brenac, P., Horbowicz, M., Downer, S.M., Dickerman, A.M., Smith, M.E. and Obendorf, R.L. (1997a) Raffinose accumulation related to desiccation tolerance during maize (Zea mays L.) seed development and maturation.
J. Plant Physiol. 150: 481-488.
Brenac, P., Smith, M.E. and Obendorf, R.L. (1997b) Raffinose accumulation in maize embryos in the absence of a fully functional Vp1 gene product. Planta 203: 222-228.
Buitink, J., Hemminga, M.A. and Hoekstra, F.A. (2000) Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiol. 122: 1217-1224.
Castillo, E.M., de Lumen, B.O., Reyes, P.S. and de Lumen, H.Z. (1990) Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes. J. Agric. Food Chem. 38: 351-355.
Chang, S., Puryear, J. and Cairney, J. (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11:113-116.
Collett, H., Shen, A., Gardner, M., Farrant, J.M., Denby, K.J. and Illing, N. (2004) Towards transcript profiling of desiccation tolerance in Xerophyta humilis: Construction of a normalized 11 k X. humilis cDNA set and microarray expression analysis of 424 cDNAs in response to dehydration. Physiol. Plant. 122: 39-53.
Crowe, J. H., Hoekstra, F. A. and Crowe, L. M. (1992) Anhydrobiosis. Annu. Rev. Physiol. 54: 579-599.
Cunningham, S.M., Nadeau, P., Castonguay, Y., Laberge, S. and Volenec, J.J. (2003) Raffinose and stachyose accumulation, galactinol synthase expression, and winter injury of contrasting alfalfa germplasms. Crop Sci. 43:562-570.
Downie, B. and Bewley, J.D. (2000) Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol. Plant. 110: 1-12.
Downie, B., Gurusinghe, S., Dahal, P., Thacker, R.R., Synder, J.C., Nonogaki, H., Yim, K., Fukanaga, K., Alvarado, V. and Bradford, K.J. (2003) Expression of a Galactinol synthase gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347–1359.
Golovina, E.A., Tiknonov, A.N. and Hoekstra, F.A. (1997) An electron paramagnetic resonance spin-probe study of membrane-permeability changes with seed aging. Plant Physiol. 114: 383-389.
Guo, C. and Oosterhuis, D.M. (1997) Effect of water-deficit stress and genotypes on pinitol occurrence in soybean plants. Environ. Exp. Bot. 37: 147-152.
Gurusinghe, S. and Bradford, K.J. (2001) Galactosyl-sucrose oligosaccharides and potential longevity of primed seeds. Seed Sci. Res. 11: 121-133.
Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403.
Karner, U., Peterbauer, T., Raboy, V., Jones, D. A., Hedley, C. L. and Richter, A. (2004) myo-Inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. J. Exp. Bot. 55: 1981–1987.
Kavi-Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A.A. and Verma, D.P.S. (1995) Overexpression of D1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.
Koster, K.L. and Leopold, A.C. (1988) Sugars and desiccation tolerance in seeds. Plant Physiol. 88: 829-832.
Kuo, T.M., Lowell, C.A. and Smith, P.T. (1997) Changes in soluble carbohydrates and enzymic activities in maturing soybean seed tissues. Plant Sci. 125:1-11.
Leprince, O., Hendry, G.A.F. and McKersie, B.D. (1993) The mechanisms of desiccation tolerance in developing seeds. Seed Sci. Res. 3: 231-246.
Lin, T.P. and Huang, N.H. (1994) The relationship between carbohydrate composition of some tree seeds and their longevity. J. Exp. Bot. 45: 1289-1294.
Liu, J.J., Odegard, W. and de Lumen, B.O. (1995) Galactinol synthase from kidney bean cotyledon and zucchini leaf. Plant Physiol. 109: 505-511.
Liu, J.J., Galvez, A.F., Krenz, D.C., de Lumen, B.O. (1997) Galactinol synthase (GS), a key enzyme in biosynthesis of raffinose family oligosaccharides (RFO): activation of enzyme activity and induction of gene expression by cold and desiccation. Plant Physiol. Suppl. 114: 130.
Liu, J.J., Krenz, D.C., Glavez, A.F. and de Lumen, B.O. (1998a) Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Sci. 134: 11-20.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi- Shinozaki, K. and Shinozaki, K. (1998b) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406.
Murray, M.G. and Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325.
Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999a) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J. 18: 185-193.
Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999b) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461: 205-210.
Obendorf, R.L., Odorcic, S., Ueda, T., Coseo, M.P. and Vassallo E. (2004) Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression. Seed Sci. Res. 14: 321-333.
Ooms, J.J.J., Léon-Kloosterziel, K.M., Bartels, D., Koornneef, M. and Karssen, C.M. (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana: a comparative study using ABA-insensitive abi3 mutants. Plant Physiol. 102: 1185-1191.
Panikulangara, T.J., Eggers-Schumacher, G., Wunderlich, M., Stransky, H. and Schöffl, F. (2004) Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136: 3148-3158.
Pattanagul, W. and Madore, M.A. (1999) Water deficit effects on raffinose family oligosaccharide metabolism in Coleus. Plant Physiol. 121: 987-993.
Peterbauer, T., Lahuta, L.B., Blöchl, A., Mucha, J., Jones, D.A., Hedley, C.L., Gòrecki, R.J. and Richter, A. (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiol. 127: 1764-1772.
Saravitz, D.M., Pharr, D.M. and Carter, T.E. (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiol. 83: 185-189.
Shinozaki, K. and Yamaguchi-Shinozaki, K. (1996) Molecular responses to drought and cold stress. Curr. Opin. Biotechnol. 7: 161-167
Shinozaki, K. and Yamaguchi-Shinozaki, K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327-334.
Sprenger, N. and Keller, F. (2000) Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J. 21: 249-258.
Sun, W.Q., Irving, T.C. and Leopold, A.C. (1994) The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiol. Plant. 90: 621-628.
Suarez, F. L., Springfield, J., Furne, J. K., Lohrmann, T. T., Kerr, P. S. and Levitt, M. D. (1999) Gas production in humans ingesting a soybean flour derived from beans naturally low in oligosaccharides. Am. J. Clin. Nutr. 69(1): 135-139.
Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417-426.
Takahashi, R., Joshee, N. and Kitagawa, Y. (1994) Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol. Biol. 26: 339-352.
Wolkers, W.F., Alberda, M., Koornneef, M., Léon-Kloosterziel, K.M. and Hoekstra, F.A. (1998) Properties of proteins and the glassy matrix in maturation-defective mutant seeds of Arabidopsis thaliana. Plant J. 16: 133-143.
Xiao, L. and Koster, K.L. (2001) Desiccation tolerance of protoplasts isolated from pea embryos. J. Exp. Bot. 364: 2105-2114.
Zhao, T.Y., Meeley, R.B. and Downie, B. (2003) Aberrant processing of a Maize galactinol synthase transcript is caused by heat stress. Plant Sci. 165: 245-256
Zhao, T.Y., Thacker, R., Corum III, J.W., Snyder, J.C., Meeley, R.B., Obendorf, R.L. and Downie, B. (2004a) Expression of the maize galactinol synthase gene family: (I) Expression of two different genes during seed development and germination. Physiol. Plant. 121: 634-646.
Zhao, T.Y., Martin, D., Meeley, R.B. and Downie, B. (2004b) Expression of the maize galactinol synthase gene family: (II) Kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells. Physiol. Plant. 121: 647-655.
第一頁 上一頁 下一頁 最後一頁 top