跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/22 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施瀚幃
研究生(外文):Han-Wei Shih
論文名稱:豌豆低溫馴化誘導蛋白質PEACI11.8之功能性分析
論文名稱(外文):Functional analysis of cold-induced protein PEACI11.8 of pea (Pisum sativum L.)
指導教授:陳益明陳益明引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:108
中文關鍵詞:低溫馴化胚胎成熟晚期第二群富含蛋白質
外文關鍵詞:Cold acclimationGroup 2 LEA protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
PEACI11.8為豌豆幼苗(台中十一號)受低溫馴化誘導之蛋白質,屬於第二群胚胎成熟晚期富含蛋白質 (Group 2 LEA protein)。前人研究指出PEACI11.8基因轉錄產物於低溫處理6小時開始累積,處理6到10天之間到達最大量。一旦將豌豆幼苗去馴化後,PEACI11.8的表現量則迅速下降。此外,PEACI11.8的表現還會受到ABA及PEG處理誘導。本實驗第一部分利用阿拉伯芥轉殖系統探討PEACI11.8於組織及細胞層次上的分佈情形。首先利用PEACI11.8啟動子融合β-glucuronidase (GUS)基因,之後轉殖於阿拉伯芥來探討啟動子受逆境因子的活化程度及組織上的分佈。阿拉伯芥未經處理逆境因子的幼苗組織染色結果顯示PEACI11.8主要表現於頂端分生組織、根部維管束組織及側根長出處。7天阿拉伯芥幼苗受逆境因子處理之組織染色結果得知,PEACI11.8 啟動子受逆境因子處理後,全株植物呈現藍色且其活化程度依序為ABA>PEG>NaCl>Cold。30天株齡未處理逆境因子的植株組織染色結果得知PEACI11.8主要表現於柱頭、果莢及莖的離層。柱頭及離層細胞兩者共同特徵在於這些細胞不具有機械性保護屏障,所以可能易遭受病菌感染。由PEACI11.8啟動子分析也得知此一啟動子序列之中具有許多W box及ELRE調控序列。推測PEACI11.8在這些細胞之中參與保護防衛功能。我們也利用PEACI11.8啟動子趨動GFP::PEACI11.8融合蛋白質,探討PEACI11.8於細胞層次上的分佈。T1植株觀察結果顯示PEACI11.8主要位於保護細胞、根成熟部及延長部細胞。在T2幼苗中 (23個lines),只在其中一個ABA處理的line發現GFP::PEACI11.8融合蛋白存在於側根長出處。但是此一結果與GUS組織染色結果一致,也證明了PEACI11.8在側根長出處扮演相當重的的角色。本實驗第二部分利用酵母菌及阿拉伯芥表現系統,探討大量表現PEACI11.8是否可提升逆境忍受程度。在酵母菌中利用GAL1啟動子大量表現PEACI11.8的結果顯示,無論在1.2M NaCl、 1.2M KCl 或是4℃處理後,大量表現PEACI11.8的酵母菌皆無法有效提升逆境忍受度。在阿拉伯芥中利用35S 啟動子量表現PEACI11.8的結果顯示,無論在100 mM NaCl、 5% PEG 或是0℃處理後,大量表現PEACI11.8的阿拉伯芥植株皆無法有效提升逆境忍受度。我們推測PEACI11.8在細胞中必須與其它蛋白質共同作用才能行使其功能。
The pea cold acclimation induced protein PEACI11.8 is a group 2 late embryogenesis abundant protein involved in plant responses to stress. Previous study showed that the accumulation of its transcripts began within 6 hours of cold treatment and peaked between 4 and 10 days of treatment. The expression of this gene was rapidly down-regulated after the acclimated seedlings were transferred to normal ambient temperature. Otherwise, PEACI11.8 was also induced by ABA and PEG treatment. In the first part of this study, we provide evidence of the tissue and cell specificity of PEACI11.8 expression. We performed histochemical analysis of PEACI11.8 using β-glucuronidase (GUS) assays in Arabidopsis. The expression of PEACI11.8 promoter::GUS was detected at high level in shoot apical meristem, root vascular tissue and lateral root initiation zone of unstressed plant. In the 7-d-old stressed plants, whole plants appeared blue and the order of induction is ABA>PEG>NaCl>Cold. In adult plants, intense staining was detected in stigma, suggesting that PEACI11.8 has roles during pollen germination or pollen tube growth. Another intense staining site is abscission zone, these cells (stigma and abscission zone) share the characterization that they are unprotected by mechanical barriers and therefore are susceptible to microbial attack and one ELRE (elicitor response element) cis-element in PEACI11.8 promoter. We suggest that PEACI11.8 may play a secondary role of local defense response in stigma and abscission zone. We also used PEACI11.8 promoter to drive GFP-PEACI11.8 fusion protein in stable transformants to investigate subcellular localization. In T1 seedlings, we observed GFP::PEACI11.8 fusion protein expressed in guard cell, root maturation zones and elongation zones. Unfortunately, only one line treated with ABA (total 23 lines) in T2 seedlings expressed GFP-PEACI11.8 fusion protein in the lateral root initiation zone. This results is consistent to histochemical staining result, suggesting that PEACI11.8 may plays a important role in lateral root cells initiation. In the second part of this study, we used two expression systems to test the contribution of PEACI11.8 to stress tolerance in Saccharomyces cerevisiae and Arabidopsis thaliana. In the Saccharomyces cerevisiae expression system, PEACI11.8 was inserted into a multicopy plasmid under the transcriptional control of the yeast GAL1 promoter, and the expression of PEACI11.8 protein was confirmed by immunochemical methods. Yeast cells expressing PEACI11.8 did not show improved growth in 1.2M NaCl, 1.2M KCl and 4℃. In the Arabidopsis thaliana expression system, PEACI11.8 coding sequence was driven by cauliflower mosaic virus 35S promoter. Transgenic plants showed no differences from wild type in normal or stress conditions.
Chapter 1. Introduction……………………………………………………………..1
1.1 Abiotic stress …………………………………………………………………......1
1.2 Cold acclimation……………………………………………………..…….……...3
1.3 LEA proteins……………………………………………………………...…….....4
1.4 Properties of Dehydrins…………………………………………………………....5
1.5 Structure analysis of dehydrins………………………………………………...….8
1.6 Localization of dehydrins……………………………………………………….....9
1.7 Putative function of dehydrins…………………………………………………...10
1.8 History of PEACI11.8………………………………………………………….…12
Chapter 2. Materials and Methods…………………………………...……………13
2.1 Material…………………………………………………………………………..13
(A) Plant material…………………………………………………………………….13
(B) Microbial material……………………………………………………………….13
(C) Plasmid constructions……………………………………………………………13
(1) Native PEACI11.8 promoter::GUS construct……………………………….13
(2) Native PEACI11.8 promoter::GFP-PEACI11.8…………………………….14
(3) 35S promoter::PEACI11.8…………………………………………………..14
2.2 Methods……………………………...…………………………………………...15
2.2.1 Gene cloning………………………...…………………………………………15
(A) Preparation of E.coli competent cell……………………………………………..15
(B) Polymerase Chain Reaction (PCR)………………………………………………16
(C) Ligation and transformation……………………………………………………...16
(D) Preparation of plasmid DNA…………………………………………………….17
(E) Gel elution………………………………………………………………………..18
2.2.2 Yeast transformation and survival assay……………………………………….19
(A) Medium…………………………………………………………………………..19
(B) Yeast transformation……………………………………………………………..20
(C) Preparation and analysis of protein extracts……………………………………...21
(D) Cold tolerance assay……………………………………………………………...21
(E) Generation of S. cerevisiae growth curves……………………………………….22
2.2.3 Plant transformation and survival assay………………………………………..22
(A) Agrobacterium competent cell preparation………………………………………22
(B) Agrobacterium competent cell transformation…………………………………..23
v
(C) Floral dipping…………………………………………………………………….23
(D) Selection of transgenic plants……………………………………………………24
(E) Germination and growth conditions of transgenic plants………………………..25
(F) Genomic DNA extraction………………………………………………………..25
(G) Southern blotting…………………………………………………………………26
(H) Total protein extraction…………………………………………………………..29
(I) Western blotting………………………………………………………………….29
(J) Histochemical staining…………………………………………………………...31
(K) Quantification of GUS activity…………………………………………………..31
(L) Stress tolerance assay…………………………………………………………….33
(M) Electrolyte leakage test…………………………………………………………..33
(N) Cofocal microscopy……………………………………………………………...33
2.2.4 Phylogenetic tree analysis……………………………………………………...34
(A) Alignment……………………………………………………………………..….34
(B) Tree analysis…………………………………………………………………...…34
Chapter 3. Results……………………………………………………………..…....35
3.1 Phylogenetic tree analysis………………………………………………………..35
3.2 Using GUS reporter gene to investigate tissue specificity……………………….36
(1) Putative cis-elements in the PEACI11.8 promoter region…………………..36
(2) Southern blot analysis………………………………………………………37
(3) Histochemical analysis……………………………………………………...37
(4) PEACI11.8 promoter are activated by stress treatment……………………..38
3.3 Using GFP-PEACI11.8 fusion protein to observe subcellular localization………40
3.4 Overexpression of PEACI11.8 to test stress tolerance…………………………...40
3.4.1 Overexpression in Saccharomyces cerevisiae………………………………….41
(1) Analysis of PEACI11.8 in S. cerevisiae………………………………………….41
(2) Effect of PEACI11.8 expression on yeast growth………………………………..41
(3) Effect of PEACI11.8 expression on cold tolerance………………………………42
3.4.2 Overexpression in Arabidopsis thaliana……………………………………….42
(1) Identification of transgenic Arabidopsis plants………….………………….42
(2) Stress tolerance assay……………………………………………………….43
Chapter 4. Discussion……………………………………………………………...45
4.1 Promoter analysis………………………………………………………………...45
4.2 Histochemical studies of PEACI11.8 promoter::GUS transfomants……………..47
4.3 Localization of GFP-PEACI11.8 fusion protein………………………………….49
4.4 Overexpression of PEACI11.8 in yeast…………………………………………..50
4.5 Overexpression of PEACI11.8 in Arabidopsis…………………………………...51
References……………………………………………………………………………54
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78.
Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C. and de Mendoza, D. (2001). Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtili. EMBO J. 20, 1681-91.
Allagulova, C.R., Gimalov, F.R., Shakirova, F.M. and Vakhitov, V.A. (2003). The Plant Dehydrins: structure and putative functions. Biochemistry ( Moscow) 68, 945-951.
Alsheikh, M.K., Heyen, B.J. and Randall, S.K. (2003). Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J Biol Chem. 278, 40882-40889.
Assmann, S. M. and Wang, X.-Q. (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4, 421-428.
Atkinson, A.H., Heath, R.L., Simpson, R.J., Clarke, A.E. and Anderson, M.A. (1993). Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is expressed into five homologous inhibitors. Plant Cell 5, 203-213.
Baker, J., Steele, C. and Dure, L.III. (1988). Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol. Bio. 11, 277-291.
Baker, S.S., Wilhelm, K.S. and Thomashow, M.F. (1994). The 5''-region of Arabidopsis thaliana cor15A has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24, 701 713.
Baydoun, E.A.H. and Fry, S.C. (1985). The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta 165, 269-276.
Borovskii, G.B., Stupnikova, I.V., Antipina, A.A., Downs, C.A. and Voinikov, V.K. (2000). Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants. J Plant Physiol 156, 797-800.
Borovskii, G.B., Stupnikova, I.V., Antipina, A.A., Vladimirova, S.V. and Voinikov, V.K. (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BioMed Central Plant Biol 2, 5.
Bravo, L.A., Close, T.J., Corcuera, L.J. and Guy, C.L. (1999). Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol Plant 106, 177-183.
Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martinez, J., Alberdi, M., Close, T.J. and Corcuera, L.J. (2003). Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol. Plant 118, 262-269.
Bray, E.A. (1993). Molecular responses to water deficit. Plant Physiol. 103, 1035-1040.
Busk, P.K., Jensen, A.B. and Pagès, M. (1997). Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J. 11, 1285 1295.
Busk, P.K. and Pagès, M. (1998). Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425 435.
Campbell, S.A. and Close, T.J. (1997). Dehydrins: genes, proteins and associations with phenotype traits. New Phytol. 137, 61-74.
Carpenter, J.F. and Crowe, J.H. (1988). The mechanism of cryoprotection of proteins by solutes, Cryobiology 25, 244-255.
Ceccardi, T.L., Meyer, N.C. and Close, T.J. (1994). Purification of a maize dehydrin. Protein Express Purif 5, 266-269.
Choi, D.W., Zhu, B. and Close, T.J. (1999). The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet 98, 1234–1247.
Choi, D.W. and Close, T.J. (2000). A newly identified barley gene, Dhn12 encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor Appl Genet 100, 1274–1278.
Close, T.J., Meyer, N.C. and Radik, J. (1995). Nucleotide Sequence of a Gene Encoding a 58.5-Kilodalton Barley Dehydrin That Lacks a Serine Tract. Plant Physiol. 107, 289-290.
Close, T.J. (1996). Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97, 795 - 803.
Close, T.J. (1997). Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100, 291-296.
Close, T.J. and Lammers, P.J. (1993). An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol. 101, 773-779.
Cote, F., Hahn, M.G. (1994). Oligosaccharins: structures and signal transduction. Plant Mol Biol 26, 1379-1411.
Danyluk, J., Houde, M., Rassart, E. and Sarhan, F. (1994). Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant graminae species. FEBS Letters 344, 20-24.
Danyluk, J., Perron, A., Houde, M., Benhamou, N. and Sarhan, F. (1998). Accumulation of a major plasma membrane-associated protein during cold acclimation of wheat. Plant Cell 10, 623-638.
del Campillo, E. and Lewis, L.N. (1992). Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol 98, 955-961.
Doares, S.H., Syrivets, T., Weiler, E.W. and Ryan, C.A. (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92, 4095-4098.
Dure, L.III., Crouch, M., Harada, J., Ho, T.H.D.,Mundy, J., Quatrano, R., Thomas, T. and Sung, Z.R. (1989). Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Bio. 12, 475-486.
Egerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. (1997). Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol Plant 101, 545-555.
Galau, G.A., Hughes, D.W. and Dure, L.S. III (1986). Abscisic acid induction of cloned cotton late embryogenesis abundant (LEA) messenger RNAs. Plant Mol. Biol. 7, 155-170.
Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A. and Covarrubias, A.A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275, 5668–5674.
Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M. and Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433 442.
Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D. and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associate with cold acclimation. Plant Physiol. 124, 1854-1865.
Godoy, J.A., Lunar, R., Torres-Shumann, S., Morena, J., Rodrigo, R.M. and Pintor-Toro, J.A. (1994). Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26, 1921-1934.
Gomez, L.M., Kelly, P., Sexton, R. and Trewavas, A.J. (1987). Identification of chitinase mRNA in abscission zones from bean. Plant Cell Environ 10, 741-746.
Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P. and Pagès, M. (1988). A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature, 334, 262 264.
Grzelczak, Z.F., et al. (1982). Synthesis and turnover of proteins and messenger RNA in germinating wheat embryos. Can. J. Biochem. 60, 389-397.
Guy, C.L. (1990). Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187-223.
Hara, M., Terashima, T.F., Fukaya T. and Kuboi, T. (2003). Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217, 290-298.
Harikrishna, K., Jampates-Beale, R., Milligan, S.B. and Gasser, C.S. (1996). An endochitinase gene expressed at high levels in the stylar transmitting tissue of tomatoes. Plant Mol Biol 30, 899-911.
Hasegawa, P.M., Bressan, R.A., Zhu, J.K. and Bohnert, H.J. (2000). Plant cellular and molecular response to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 51,463-499.
Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. (2002). The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130, 675-687.
Higo, K., Ugawa, Y.,Iwamoto, M. and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Research 27, 97-300.
Hong, S.B., Sexton, R. and Tucker, M.L. (2000). Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol. 123, 869-881.
Honjoh, K.I., Oda, Y., Takata, R., Miyamoto, T. and Hatano, S. (1999). Introduction of the hiC6 gene, which encodes a homologue of a late embryogenesis abundant (LEA) protein, enhances freezing tolerance of yeast. J. Plant Physiol. 155, 509-512.
Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. (1995). Immunolocalization of freezing tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8, 583-593.
Houde, M., Dallaire, S., N’Dong, D. and Sarhan, F. (2004). Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotech. J. 2, 1-7.
Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C. and Chan, M.T. (2002a). Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086-1094.
Hsieh, T.H., Lee, J.T., Charng, Y.Y. and Chan, M.T. (2002b). Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618-626.
Hughes, D.W. and Galau, G.A. (1989). Temporally modular gene expression during cotyledon development. Gene Dev. 3, 358-369.
Imai, R., Chang, L., Ohta, A., Bray, E.A. and Takagi, M. (1996). A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170, 243-248.
Ismail, A.M., Hall, A.E. and Close, T.J. (1999a). Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci U S A. 96, 13566-13570.
Ismail, A.M., Hall, A.E. and Close, T.J. (1999b). Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120, 237-244.
Iturriaga, G., Schneider, K., Salamini, F. and Bartels, D. (1992). Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant. Mol. Biol. 20, 555-558.
Jaglo-Ottosen, K.R., Gimour, S.J., Zarka, D.G., Schabenberger, O. and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and ehances freezing tolerance. Science 280, 104-106.
Jarvis, S.B., Taylor, M.A., MacLeond, M.R. and Davies, H.V. (1996). Cloning and characterization of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudosuga menziesii). J. Plant Physiol. 147, 559-566.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17, 287-291.
Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D. and Guy, C. (1998). Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 116, 1367-1377.
Kazuoka, T. and Oeda, K. (1994). Purification and characterization of Cor85-oligomeric complex from cold-acclimated spinach. Plant Cell Physiol. 35, 601-611.
Kizis, D., Goday, A. and Pagès, M. (2000). The AP2/EREBP plant transcription factors. Curr. Topics Plant Biol. 2, 107 116.
Kizis, D. and Pages, M. (2002). Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J. 30, 679-689.
Knight, H. (2000). Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195, 269–325.
Krüger, C., Berkowitz, O., Stephan, U.W. and Hell, R. (2002). A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. J Biol Chem 277, 25062-25069.
Kung, C.C.S., Yeh, K.W., Lin, C.Y. and Chen, Y.M. (1998). Characterization of a pea gene responsive to low temperature. Bot. Bull. Acad. Sin. 39, 9-15.
Lång, V. (1993). The role ABA and ABA-induced gene expression in cold acclimation of Arabidopsis thaliana. Ph.D. Dissertation, Uppsala, Swedish University of Agricultural Sciences, Uppsala Genetic Center, Sweden.
Laskowski, M.J., Williams, M.E., Nusbaum, H.C. and Sussex, I.M. (1995). Formation of lateral root meristems is a two-stage process. Development 121, 3303-3310.
Laux, T. and Schoof, H. (1997). Maintaining the shoot meristem—The role of CLAVATA1.. Trends Plant Sci. 2,325-327.
Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M., Arora, R., Shanker, S. and Rowland, L. (1999). Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 107, 98-109.
Li, R., Brawley, S.H. and Close, T.J. (1998). Proteins immunologically related to dehydrins in fucoid alage. J. Phycol. 34, 642-650.
Li, J., Kinoshita, T., Pandey, S., Ng, C.K., Gygi, S.P., Shimazaki, K. and Assmann, S.M. (2002). Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature. 418, 793-797.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10, 1391 1406.
Lisse, T., Bartels, D., Kalbitzer, H.R. and Jaenicke, R. (1996). The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem 377, 555-561.
Luo, M., Liu, J.H., Mohapatra, S., Hill, R.D. and Mohapatra, S.S. (1992). Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of Alfalfa. J. Biol. Chem. 267, 15367-15374.
Malamy, J.E. and Benfey, P.N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33-44.
Martin, J., Geromanos, S., Tempst, P. and Hartl, F.U. (1993). Identification of nucleotide-binding regions in the chaperonin proteins GroEL and GroES. Nature 366, 279-282.
Mohapatra, S.S., Wolfraim, L., Poole, R.J. and Dhindsa, R.S. (1989). Molecular – cloning and relationship to freezing tolerance of cold-acclimation-specific genes of alfalfa. Plant Physiol. 89, 375-380.
Mtwisha, L., Brandt, W., McCread, L. and Lindsey, G.G. (1998). HSP12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol. Bio. 37, 513-521.
Mundy, J. and Chua, N.H. (1988). Absisic acid and water stress induce the expression of a novel rice gene. EMBO J. 7, 2279 2286.
Murata, N. and Los, D.A. (1997). Membrane fluidity and temperature perception.
Plant Physiol. 115, 875-879.
NDong, C., Danyluk, J., Wilson, K.E., Pocock, T., Huner, N.P. and Sarhan, F. (2002). Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analysis. Plant Physiol. 129, 1368-1381.
Nicholas, K.B. and Nicholas, H.B. (1997). GeneDoc: analysis and visualization of genetic variation . Http://www. Cris.com/~ketchup/genedoc.html.
Nishiuchi, T., Shinshi, H. and Suzuki, K. (2004). Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem. 279, 55355-55361.
Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. (2001). Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45, 263-279.
Oh, S.J., Song, S.I., Kim, Y.S., Jang, H.J., Kim, S.Y., Kim, M., Kim, Y.K., Nahm, B.H. and Kim, J.K. (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol. 138, 341-351.
Okamuro, J.K., Caster, B., Villarroel, R., Montagu, M. and Jofuku, K.D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl Acad. Sci. USA, 94, 7076 7081.
Örvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R. (2000). Early steps in cold sensing by plant cells: The role of actin cytoskeleton and membrane fluidity. Plant J. 23, 785–794.
Plieth, C., Hansen, U.P., Knight, H., and Knight, M.R. (1999). Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant J. 18, 491–497.
Puhakainen, T., Hess, M.W., Makela, P., Svensson, J., Heino, P. and Palva, E.T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol. 54, 743-753.
Quatrano, R.S. (1986). Regulation of gene expresión by abscisic acid during angiosperm embryo development. Oxford Surveys Plant Mol. Cell Biol. 3, 467 477.
Richard, S., Morency, M.J., Drevet, C.,Jouanin, L. and Séguin, A. (2000). Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol. Bio. 43, 1-10.
Riechmann, J.L. and Meyerowitz, E.M. (1998). The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633 646.
Riera, M., Figueras, M., Lopez, C., Goday, A.and Pages, M. (2004). Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize. Proc Natl Acad Sci U S A. 101, 9879-9884.
Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W. and van der Schoot, C. (1999). Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209, 377-388.
Roberts, J.K., DeSimone, N. A., Lingle, W. L. and Dure, L. III (1993). Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. Plant Cell 5, 769-780.
Rodriguez, E.M., Svensson, J.T., Malatrasi, M., Choi, D.W. and Close, T.J. (2005). Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet. 110, 852-858.
Rouse, D.T., Marotta, R. and Parish, R.W. (1996). Promoter and expression studies on an Arabidopsis thailana dehydrin gene. FEBS Lett. 381, 252-256.
Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K. and Somssich, I.E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J. 15, 5690-5700.
Sanders, D., Brownlee, C., and Harper, J.F. (1999). Communicating with calcium. Plant Cell 11, 691–706.
Sangwan, V., Foulds, I., Singh, J., and Dhindsa, R.J. (2001). Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J. 27, 1–12.
Sarhan, F., Ouellet, F., and Vazquez-Tello, A. (1997). The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 101, 439-445.
Schneider, M., Bairoch, A., Wu, C.H. and Apweiler, R.(2005). Plant protein annotation in the UniProt Knowledgebase.Plant Physiol. 138: 59-66.
Schroeder, J.I., Kwak, J.M. and Allen, G.J. (2001). Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature. 410, 327-330.
Shinozaki, K. and Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327 334.
Shinwari, Z.K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (1998). An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophy. Res. Commun. 250, 161 170.
Simpson, S.D., Nakashima, K., Narusaka, Y., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003). Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33, 259-270.
Sivamani, E., Bahieldin, A., Wraith, J.M., Al-Niemi, T., Dyer, W.E., Ho, T.-H. D. and Wu, R. (2000). Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155, 1-9.
Soulages, J.L., Kim, K., Arrese, E.L., Walters, C. and Cushman, J.C. (2003). Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol.131, 963-975.
Stockinger, E.J., Gilmour, S.J. and Thomashow, F.M. (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl Acad. Sci. USA, 94, 1035 1040.
Suzuki, I., Kanesaki, Y., Mikami, K., Kanehisa, M. and Murata, N. (2001). Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis.
Mol Microbiol. 40, 235-44.
Svensson, J., Ismail, A.M., Palva, E.T. and Close, T.J. (2002). Dehydrins. In: Storey KB, Storey JM (eds) Sensing, signaling and cell adaptation. Elsevier, Amsterdam, pp 155–171.
Swire-Clark, G.A. and Marcotte, Jr.W.R. (1999). The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol. Biol. 39, 117-128.
Thomashow, M.F. (1999). PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 50, 571-599.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. (1997). The clustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882.
Urao, T., Yamaguchi-Shinozaki, K. and Shinozaki K. (2000). Two-component systems in plant signal transduction. Trends Plant Sci. 5, 67-74.
Wang, Q.Y., and Nick, P. (2001). Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol. 42, 999–1005.
Weigel, D. (1995). The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell, 7, 388 389.
Weiss, C. and Bevan, M.W. (1991). Ethylene and a wound signal modulate local and systemic transcription of win2 genes in transgenic potato plants. Plant Physiol 96, 943-951
Welin, B.V. et al. (1994). Characterization and differential expression of dhn / lea / rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Bio. 26, 131-144.
Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M. and Griffith, M. (1999). Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol. Plant 105, 600-608.
Xin, Z. and Browse, J. (1998). eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. USA 95, 7799-7804.
Xiong, L., Lee, H., Ishitani, M., and Zhu, J.K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J. Biol. Chem. 277, 8588–8569.
Xiong, L., Schumaker, K.S. and Zhu, J.K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell. 14, S165-83.
Xiong, L., and Zhu, J.K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25, 131–139.
Xu, D.P., Duan, X.L., Wang, B.Y., Hong, B.M., Ho, T.H.D. and Wu, R. (1996). Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249-257.
Xue,G.P. (2003). The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J. 33, 373-383.
Yamaguchi-Shinozaki, K. and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251 264.
Zhang, L., Ohta, A., Takagi, M. and Imai, R. (2000). Expression of plant group 2 and group 3 lea genes in Saccharoymyces cerevisiae revealed functional divergence among LEA proteins. J. Biochem. 127, 611-616.
Zhu, J.K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66–71.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top