跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/02 23:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱瓊枝
研究生(外文):Chiung-Chih Chu
論文名稱:單一阿拉伯芥銅鑲嵌蛋白質可賦予三類不同銅鋅超氧歧化酵素活性之研究
論文名稱(外文):A Copper Chaperone for Superoxide Dismutase Confers Three Types of CuZnSOD Activity in Arabidopsis thaliana
指導教授:靳宗洛靳宗洛引用關係
指導教授(外文):Tsung-Luo Jinn
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:64
中文關鍵詞:銅鑲嵌蛋白質超氧歧化酵素阿拉伯芥
外文關鍵詞:Copper Chaperone for Superoxide DismutaseCuZnSODArabidopsis thaliana
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知在酵母菌及哺乳動物中,copper chaperone for superoxide dismutase (CCS)是負責提供並將銅離子鑲嵌至超氧歧化酵素(superoxide dismutase,SOD)的蛋白質,而阿拉伯芥也有一個可能的CCS基因(At1g12520,AtCCS)。此基因之產物與其他物種的CCS具相似性,也可區分為三個不同的domains,分別是位於N端具有可抓住銅離子的ATX1-like domain (具MXCXXC metal binding motif)、胺基酸序列與CuZnSOD蛋白質有部分相似的central domain以及位於C端屬於CCS蛋白質所特有之序列,此區段亦具有可抓住銅離子的CXC motif。己知阿拉伯芥有三個CuZnSOD基因,分別為CSD1、CSD2及CSD3,其中CSD1及CSD2的活性分別位於細胞質及葉綠體中,由於CSD3蛋白質的C端具有peroxisome targeting signal (AKL),所以被認為會被送入peroxisomes。然而,可能的AtCCS基因卻僅有一個,為瞭解此基因與三種CuZnSOD之間的關係,本研究利用一個同時失去三種CuZnSOD活性之Atccs knockout突變株為材料,將由The Arabidopsis Information Resource (TAIR) database中所預測的AtCCS cDNA編譯區段轉入此Atccs突變株,發現只有細胞質及peroxisome中的CuZnSOD活性會回復。在由Munich Information Centre for Protein Sequences (MIPS)中所預測的AtCCS cDNA編譯區段中,可轉譯出比TAIR database所預測AtCCS蛋白質的N端多了66個胺基酸,當我們將此基因轉入Atccs突變株,發現除上述兩種CuZnSOD外,葉綠體型CuZnSOD的活性也可被回復。經離體葉綠體蛋白質運移實驗證明,此N端多出來的66個胺基酸確實與AtCCS蛋白質進入葉綠體有關。實驗結果顯示單一AtCCS基因的產物可同時活化三種CuZnSOD活性。我們也將僅含有central domain及C-terminal domain的AtCCS蛋白質表現在Atccs突變株,發現轉植株之CuZnSOD活性並未被回復,此結果顯示在植物體中,ATX1-like domain對於AtCCS蛋白質的功能是必要的區段。
此外,我們也將水稻中可能的CCS基因(OsCCS)之cDNA對應至mature peptide的編譯區段,轉殖到Atccs突變株進行功能性互補試驗(functional complementation assay),發現細胞質及peroxisome中的CuZnSOD活性可被回復,顯示此OsCCS基因確實具有CCS的功能,驗證了除了酵母菌的lys7突變株外,Atccs突變株也是一個適合用來探討其他植物CCS homologues功能的系統。
The copper chaperone for superoxide dismutase (CCS) has been identified as a key factor integrating copper into copper/zinc superoxide dismutase (CuZnSOD) in Saccharomyces cerevisiae and mammals. In Arabidopsis thaliana, only one putative CCS gene (AtCCS, At1g12520) has been identified. The predicted AtCCS polypeptide contains three distinct domains, a central domain flanked by an ATX1-like and a C-terminal domains. The ATX1-like and the C-terminal domains contain putative copper-binding motifs. We have investigated the function of this putative AtCCS gene and shown that a cDNA encoding the open reading frame predicted by the Arabidopsis Information Resource (TAIR) complemented only the cytosolic and peroxisomal CuZnSOD activities in the Atccs knockout mutant, which has lost all CuZnSOD activities. However, a longer AtCCS cDNA, as predicted by the Munich Information Centre for Protein Sequences (MIPS), and encoding an extra 66 amino acids at the N terminus, could restore all three, including the chloroplastic, CuZnSOD activities in the Atccs mutant. The extra 66 amino acids were shown to direct the import of AtCCS into chloroplasts. Our results indicated that one AtCCS gene was responsible for the activation of all three types of CuZnSOD activity. In addition, a truncated AtCCS, containing only the central and C-terminal domains without the ATX1-like domain failed to restore any CuZnSOD activity in the Atccs mutant. This result indicates that the ATX1-like domain is essential for the copper chaperone function of AtCCS in planta.
The mature peptide of a putative CCS homologue in Oryza sativa (OsCCS) was ectopically expressed in the Atccs mutant and complemented the cytosolic and peroxisomal CuZnSOD activities. The results indicate that the OsCCS protein functions as a copper chaperone donating copper ions to CuZnSOD. The Atccs mutant can serve as another system, in addition to the yeast lys7 mutant, to confirm the function of the other CCS homologues of plants.
Abstract in Chinese I
Abstract in English III
Abbreviations V
Introduction 1
Copper Ion in Living Organisms 2
Copper Trafficking Factors 2
Plant Homologues of the Copper Trafficking Factors 5
ATX1-Like Domain Study 7
Aims of the Dissertation 8
Materials and Methods 9
Plants, Growth condition, and CuSO4 Treatment 9
Analysis of the CCS Gene Sequence 9
Southern-Blot Analyses 10
Northern-Blot Analyses 10
RT-PCR and 5''-RACE of the AtCCS Gene 11
Protein Extraction and Quantification 12
Electrophoresis and SOD Activity Analyses 12
Immunoblot Analyses 12
In Vitro Transcription/Translation of AtCCScyt and AtCCScp Proteins, and Protein Import into Isolated Chloroplasts 13
Gene Construction and Plant Transformation 14
Construction and Transient Expression of the Reporter Genes 15
Results 17
AtCCS Gene in A. thaliana 17
Identification and Characterization of Superoxide Dismutase Activities in A. thaliana 18
CuZnSOD Activity and AtCCS Expression Pattern 19
Characterization of the Atccs Knockout Mutant 19
Different Recovery of CuZnSOD Activities in the Atccs Mutant Complemented with AtCCScyt, AtCCScp, and AtCCScp-mut 20
Chloroplastic Localization of AtCCScp 22
Localization of AtCCS Protein In Vivo 22
Importance of the ATX1-like Domain in Conferring CuZnSOD Activity 23
OsCCS Gene in Oryza sativa 24
Discussion 26
Figures 32
References 54
Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andrés-Colás N, Bodecker JR, Puig S, Peñarrubia L, Pilon M (2005a) AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett 579: 2307-2312
Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005b) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17: 1233-1251
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402
Arnesano F, Banci L, Bertini I, Bonvin AM (2004) A docking approach to the study of copper trafficking proteins; interaction between metallochaperones and soluble domains of copper ATPases. Structure 12: 669-676
Arnesano F, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Huffman DL, O’Halloran (2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Biol Chem 276: 41365-41376
Balandin T, Castresana C (2002) AtCOX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiol 129: 1852-1857
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44: 276-287
Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20: 1195-1197
Beem KM, Rich WE, Rajagopalan KV (1974) Total reconstitution of copper-zinc superoxide dismutase. J Biol Chem 249: 7298-7305
Beers J, Glerum DM, Tzagoloff A (1997) Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J Biol Chem 272: 33191-33196
Beyer W, Imlay J, Fridovich I (1991) Superoxide dismutases. Prog Nucleic Acid Res Mol Biol 40: 221-253
Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83-116
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
Brown NM, Torres AS, Doan PE, O’Halloran TV (2004) Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc Natl Acad Sci USA 101: 5518-5523
Bueno P, Varela J, Gimeenez-Gallego G, del Rio LA (1995) Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108: 1151-1160
Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci USA 101: 5964-5969
Casareno RL, Waggoner D, Gitlin JD (1998) The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem 273: 23625-23628
Chabregas SM, Luche DD, Van Sluys MA, Menck CFM, Silva-Filho MC (2003) Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 116: 285-291
Chen HC, Pan SM (2001) Study of CuZnSOD physiological function in Arabidopsis thaliana. Master Thesis, Institute of Botany, National Taiwan University, Taipei, Taiwan, ROC
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
Collings DA, Harper JDI, Marc J, Overall RL, Mullen RT (2002) Life in the fast lane: actin-based motility of plant peroxisomes. Can J Bot 80: 430-441
Company P, Gonzalez-Bosch C (2003) Identification of a copper chaperone from tomato fruits infected with Botrytis cinerea by differential display. Biochem Biophys Res Commun 304: 825-830
Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272: 23469-23472
Dancis A, Haile D, Yuan DS, Klausner RD (1994a) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269: 25660-25667
Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994b) Molecular characterization of a copper transport protein in S. cerevisiae: an unspected role for copper and iron transport. Cell 76: 393-402
Danpure CJ (1995) How can the products of a single gene be localized to more than one intracellular compartment? Trends Cell Biol 5: 230-238
Dellaporta SL (1993) Plant DNA miniprep and microprep: Versions 2.1-2.3. In The Maize Handbook, M. Freeling and V. Walbot, eds (New York: Springer-Verlag), pp. 522-525
Elgersma Y, Vos A, van den Berg M, van Roermund CW, van der Sluijs P, Distel B, Tabak HF (1996) Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae. J Biol Chem 271: 26375-26382
Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005-1016
Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8: 978-984
Forman HJ, Fridovich I (1973) On the stability of bovine superoxide dismutase. The effects of metals. J Biol Chem 248: 2645-2649
Fridovich I (1978) The biology of oxygen radicals. Science 201: 875-880
Furukawa Y, Torres AS, O’Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23: 2872-2881
Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271: 14504-14509
Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186: 1-85
Harrison MD, Jones CE, Dameron CT (1999) Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem 4: 145-153
Hayashi M, Aoki M, Kato A, Kondo M, Nishimura M (1996) Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J 10: 225-234
Hayashi M, Aoki M, Kondo M, Nishimura M (1997) Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxyl-terminal tripeptide. Plant Cell Physiol 38: 759-768
Heaton D, Nittis T, Srinivasan C, Winge DR (2000) Mutational analysis of the mitochondrial copper metallochaperone Cox17. J Biol Chem 275: 37582-37587
Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27: 297-300
Himelblau E, Amasino RM (2000) Delivering copper within plant cells. Curr Opin Plant Biol 3: 205-210
Himelblau E, Mira H, Lin SJ, Culotta VC, Peñarrubia L, Amasino RM (1998) Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117: 1227-1234
Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383-393
Horecka J, Kinsey PT, Sprague GF Jr (1995) Cloning and characterization of the Saccharomyces cerevisiae LYS7 gene: evidence for function outside of lysine biosynthesis. Gene 162: 87-92
Huffman DL, O’Halloran TV (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem 275: 18611-18614
Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302-1309
Jackson C, Dench J, Moore AL, Halliwell B, Foyer CH, Hall DO (1978) Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants. Eur J Biochem 91: 339-344
Kampfenkel K, Kushnir S, Babiychuk E, Inzé D, Van Montagu M (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast copper homologue. J Biol Chem 270: 28479-28486
Kanematsu S, Asada K (1989) CuZn-superoxide dismutase in rice: occurrence of an active, monomeric enzyme and two types of isozyme in leaf and non-photosynthetic tissues. Plant Cell Physiol 30: 381-391
Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118: 637-650
Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266: 19876-19870
Kozak M (1997) Recognition of AUG and alternative initiator condons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16: 2482-2492
Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2000) Heterodimer formation between superoxide dismutase and its copper chaperone. Biochemistry 39: 14720-14727
Lamb AL, Torres AS, O’Halloran TV, Rosenzweig AC (2001) Heterodimeric structure of superoxide dismutase in complex with its metallochaperone. Nat Struct Biol 8: 751-755
Lee H, Lee JS, Bae EK, Choi YI, Noh EW (2005) Differential expression of a poplar copper chaperone gene in response to various abiotic stresses. 25: 395-401
Lee WC, Pan SM, Jinn TL (2003) The interaction between CuZnSOD and CCS in Arabidopsis thaliana. Master Thesis, Institute of Botany, National Taiwan University, Taipei, Taiwan, ROC
Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13: 2175-2190
Lin SJ, Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 92: 3784-3788
Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272: 9215-9220
Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279: 5072-5080
McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055
McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10: 1861-1874
Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467-472
Mira H, Martinez-Garcia F, Peñarrubia L (2001) Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J 25: 521-528
Mullen RT, Lee MS, Flynn CR, Trelease RN (1997a) Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Implications for the role of accessory residues upstream of the type 1 peroxisomal targeting signal. Plant Physiol 115: 881-889
Mullen RT, Lee MS, Trelease RN (1997b) Identification of the peroxisomal targeting signal for cottonseed catalase. Plant J 12: 313-322
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 437-497
Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18: 4361-4371
Nowak K, Luniak N, Meyer S, Schulze J, Mendel RR, Hänsch R (2004a) Fluorescent proteins in poplar: a useful tool to study promoter function and protein localization. Plant Biol 6: 65-73
Nowak K, Luniak N, Witt C, Wüstefeld Y, Wachter A, Mendel RR, Hänsch R (2004b) Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45: 1889-1894
Pan SM, Chen MK, Chung MH, Lee KW, Chen IC (2001) Expression and characterization of monocot rice cytosolic CuZnSOD protein in dicot Arabidopsis. Transgenic Res 10: 343-351
Pan SM, Hwang GB, Liu HC (1999) Over-expression and characterization of copper/zinc-superoxide dismutase from rice in Escherichia coli. Bot Bull Acad Sin 40: 275-281
Peña MMO, Lee J, Thiele DJ (1999) A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129: 1251-1260
Perry SE, Li HM, Keegstra K (1991) In vitro reconstitution of protein transport into chloroplasts. Methods Cell Biol 34: 327-344
Portnoy ME, Rosenzweig AC, Rae T, Huffman DL, O’Halloran TV, Culotta VC (1999) Structure-function analyses of the ATX1 metallochaperone. J Biol Chem 274: 15041-15045
Prohaska JR, Geissler J, Brokate B, Broderius M (2003) Copper, zinc-superoxide dismutase protein but not mRNA is lower in copper-deficient mice and mice lacking the copper chaperone for superoxide dismutase. Exp Biol Med 228: 959-966
Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278: 853-856
Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284: 805-808
Rae TD, Torres AS, Pufahl RA, O’Halloran TV (2001) Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS. J Biol Chem 276: 5166-5176
Rensink WA, Pilon M, Weisbeek P (1998) Domains of a transit sequence required for in vivo import in Arabidopsis chloroplasts. Plant Physiol 118: 691-699
Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135: 783-800
Rizhsky L, Liang H, Mittler R (2003) The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278: 38921-38925
Rombauts S, Dehais P, van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27: 295-296
Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279: 15348-15355
Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51: 577-587
Schmidt PJ, Kunst C, Culotta VC (2000) Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein-protein interactions with the copper chaperone for SOD1. J Biol Chem 275: 33771-33776
Schmidt PJ, Rae TD, Pufahl RA, Hamma T, Strain J, O’Halloran TV, Culotta VC (1999) Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase. J Biol Chem 274: 23719-23725
Schnell DJ, Hebert DN (2003) Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112: 491-505
Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15: 1333-1346
Silva-Filho MC (2003) One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 6: 589-595
Small I, Wintz H, Akashi K, Mireau H (1998) Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol Biol 38: 265-277
Smeekens S, Bauerle C, Hageman J, Keegstra K, Weisbeek P (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46: 365-375
Soll J, Schleiff E (2004) Protein import into chloroplasts. Nat Rev Mol Cell Biol 5: 198-208
Sun CW, Chen LJ, Lin LC, Li Hm (2001) Leaf-specific upregulation of chloroplast translocon genes by a CCT motif-containing protein, CIA2. Plant Cell 13: 2053-2061
Trindade LM, Horvath BM, Bergervoet MJ, Visser RG (2003) Isolation of a gene encoding a copper chaperone for copper/zinc superoxide dismutase and characterization of its promoter in potato. Plant Physiol 133: 618-629
Tu SL, Li HM (2000) Insertion of OEP14 into the outer envelope membrane is mediated by proteinaceous components of chloroplasts. Plant Cell 12: 1951-1960
Valentine JS, Gralla EB (1997) Delivering copper inside yeast and human cells. Science 278: 817-818
Walton PA, Hill PE, Subramani S (1995) Import of stably folded proteins into peroxisomes. Mol Biol Cell 6: 675-683
Wintz H, Vulpe C (2002) Plant copper chaperones. Biochem Soc Trans 30: 732-735
Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 97: 2886-2891
Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci 94: 7481-7486
Zhu H, Shipp E, Sanchez RJ, Liba A, Stine JE, Hart PJ, Gralla EB, Nersissian AM, Valentine JS (2000) Cobalt (2+) binding to human and tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. Biochemistry 39: 5413-5421
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top