(3.237.20.246) 您好!臺灣時間:2021/04/15 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳秀中
研究生(外文):Hsiu-Chung Wu
論文名稱:昆欄樹之花部器官決定性同源基因之鑑定與性質分析
論文名稱(外文):The characterization of floral organ identity gene homologues in Trochodendron aralioides Sieb. & Zucc.
指導教授:胡哲明胡哲明引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:86
中文關鍵詞:昆欄樹花部器官決定性基因花部發育
外文關鍵詞:Trochodendron aralioidesfloral developmentABC model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
昆欄樹(昆欄樹科)是一種相當獨特的植物,僅分佈於台灣、日本、琉球群島以及南韓;它的花沒有花被構造,木質部沒有導管組織,因此曾經被認為是很原始的被子植物。但近年來從其他形態細部構造及分子譜系分析得到的證據,發現昆欄樹並非被子植物基群(basal angiosperms),而是屬於真雙子葉植物(Eudicots)基群。1986年Peter Endress利用掃描式電子顯微鏡觀察昆欄樹花部構造,發現在靠近雄蕊的基部有疑似花被退化的器官。我們的觀察發現花托上退化的鱗片狀構造數目比Endress所觀察到的多,而且數目可能和雌先熟或雄先熟的個體差異有關。此外,藉由掃描式電子顯微鏡觀察花部的表皮細胞形態,發現在所有的花部表皮細胞都呈現不同程度的乳突狀(papillate)突起。這種表皮細胞形態多發現於一般花瓣,而這種細胞形態有助於反射光線,使得組織看起來比較明亮。因此由觀察的結果推測,昆欄樹的花被構造可能在演化的過程中遺失,而花被吸引傳粉者的功能可能由整朵花序所取代。為了了解昆欄樹花部器官可能的調控機制,本論文進行昆欄樹之花部器官決定性同源基因的選殖。除了先前研究所選殖出三個B class同源基因之外,本實驗結果共選殖出二個A class同源基因,二個C class同源基因,四個E class同源基因。利用這些花部器官決定基因所建立之譜系關係都支持昆欄樹的演化位置的確在真雙子葉基群。然而從RT-PCR的結果發現,這些選殖出來的花部器官決定性同源基因表現位置並不符合目前所認知的ABCDE model。此差異有可能是昆欄樹的花部器官決定性基因調控模式的確和模式植物的調控機制不同,亦有可能是實驗技術上的限制所造成的差異。昆欄樹的花部器官發育機制尚待更進一步的研究。
Trochodendron aralioides is the sole member of the family Trochodendraceae, and is restricted to Taiwan, the Ryukyu Islands, Japan, and South Korea. T. aralioides has vesselless wood and lacks a perianth, therefore for some time it has been suggested as one of the most primitive angiosperms. But according to detailed morphological and anatomical studies, and molecular phylogenetic analyses, it is widely accepted now that Trochodendron belongs to a more derived group in angiosperms, the basal eudicots. In 1986, Endress demonstrated that there are a few residual scales located between the prophylls and the stamens of T. aralioides, and called those residue organs “tepals”. Our observations showed that there are more scales appearing serially from prophylls to tepals in our samples than that Endress reported. Furthermore, we found that the number of scales differs slightly between protandrous and protogynous flowers. The epidermal cells on the floral parts are more or less papillate, similar to the epidermal cells of ordinary showy petals of other species. The results suggest that the perianth of Trochodendron is very likely reduced during evolution instead of being a pleiomorph in the angiosperms, and the perianth has been replaced by the whole inflorescence as the attracting agent. In order to elucidate the underlying mechanism of floral organ formation, we have characterized putative floral organ identity genes in T. aralioides. Previously, investigators cloned three B class homologues from T. aralioides, we have built on that previous work by successfully cloning one A class, two C class, and four E class homologous genes from this species. The sequences all show distinct C-terminal motifs corresponding to the previously characterized ACE class genes, and phylogenetic analysis confirmed these identities. The phylogenetic analysis also supports Trochodendron as a member of basal eudicots based on the identified gene sequences. The RT-PCR expression patterns for those floral identity gene homologues do not match well to the current floral ABCDE model. Whether or not the discrepancy is due to a deviation from the standard model or due to methodological limitations awaits further examination, such as immunolocalization studies or other functional assays.
List of figures ii
List of tables iii
Abstract iv
摘要 v
1. Introduction 1
1.1.1. Systematic history of Trochodendron aralioides 1
1.1.2. Floral characters of Trochodendron aralioides 2
1.2. Evolution of the perianth 3
1.3. Developmental program of floral organ morphogenesis 4
1.3.1. MADS-box gene structure and protein function 5
1.3.2. Floral quartet model 6
1.3.3. Major duplication events of floral homeotic MADS-box genes in angiosperm evolution 6
1.4. Goals 7
2. Materials and methods 11
2.1. Sample collection and fixation 12
2.2. RNA extraction 12
2.3. First strand cDNA synthesis 13
2.4. Polymerase chain reaction and PCR product purification 13
2.5. Ligation and transformation 14
2.6. Colony PCR screening and plasmid purification 15
2.7. 5’RACE (Rapid Amplificatin of cDNA Ends) 15
2.8. Phylogenetic analysis 16
2.9. RT-PCR characterization of expression 17
2.10. SEM sample preparation (protocol from EM lab. in Academia Sinica) 18
2.11. Sectioning of plant materials 18
3. Results 27
3.1. Morphological observations 27
3.2. Screening and phylogenetic analyses of floral homeotic genes 37
3.3. Expression of floral identity gene homologues 54
3.4. Divergence of MADS-box genes 57
4. Discussion 60
4.1. Identity of residual phyllotaxis in Trochodendron 60
4.2. Phylogenetic analysis of floral identity genes 60
4.3. Applicability of the ABCDE model in Trochodendron 61
4.4. Papillated cells on the inflorescence of Trochodendron 63
4.5. Hypothesis for floral development in Trochodendron 64
4.6. Divergence of MADS-box genes in Trochodendron 65
Reference 68
Appendix 1. One example of screening floral organ identity genes 74
Appendix 2. Alignment of A class lineage 75
Appendix 3. Alignment of C class lineage 78
Appendix 4. Alignment of E class lineage 78
ALBERT, V. A., M. H. G. GUSTAFSSON, AND L. DI LAURENZIO. 1998. Ontogenetic systematics, molecular developmental genetics and the angiosperm flower. Page 349-374. In: Soltis, P., Soltis, D., and Doyle, J. J. (eds.). Molecular Systematics of Plants II. Kluwer Academic Publishers. New York City, NY, USA.
ALVAREZ-BUYLLA, E. R., S. PELAZ, S. J. LILJEGREN, S. E. GOLD, C. BURGEFF, G. S. DITTA, L. RIBAS DE POUPLANA, L. MARTINEZ-CASTILLA, AND M. F. YANOFSKY. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of National Academy of Sciences, USA 97: 5328-5333.
BAUM, D. A. 1998. The evolution of plant development. Current Opinion in Plant Biology 1: 79-86.
BAUM, D. A., AND B. A. WHITLOCK. 1999. Plant development: Genetic clues to petal evolution. Current Biology 9: R525-R527.
BOWMAN, J. L. 1997. Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. Journal of Biosciences 22: 515-527.
ANGIOSPERM PHYLOGENY GROUP. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85: 531-553.
ANGIOSPERM PHYLOGENY GROUP. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399-436.
CARLQUIST, S. 1975. Ecological strategies of xylem evolution. California University Press, Berkeley, CA, USA. 259 pp.
CHANG, S., J. PURYEAR, AND J. CAIRNEY. 1993. A simple and efficient method for isolating RNA from pine tree. Plant Molecular Biology Reporter 11: 113-116.
CHASE, M. W., D. E. SOLTIS, R. G. OLMSTEAD, D. MORGAN, D. H. LES, B. D. MISHLER, M. R. DUVALL, R. A. PRICE, H. G. HILLS, Y. L. QIU, K. A. KRON, J. H. RETTIG, E. CONTI, J. D. PALMER, J. R. MANHART, K. J. SYTSMA, H. J. MICHAELS, W. J. KRESS, K. G. KAROL, W. D. CLARK, M. HEDREN, B. S. GAUT, R. K. JANSEN, K. J. KIM, C. F. WIMPEE, J. F. SMITH, G. R. FURNIER, S. H. STRAUSS, Q. Y. XIANG, G. M. PLUNKETT, P. S. SOLTIS, S. M. SWENSEN, S. E. WILLIAMS, P. A. GADEK, C. J. QUINN, L. E. EGUIARTE, E. GOLENBERG, G. H. LEARN, S. W. GRAHAM, S. C. H. BARRETT, S. DAYANANDAN, AND V. A. ALBERT. 1993. Phylogenetics of seed plants - an analysis of nucleotide-sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528-580.
CHAW, S. M. 1992. Pollination, breeding syndromes, and systematics of Trochodendron aralioides Sieb. & Zucc. (Trochodendraceae), a relictual species in eastern Asia. Phytogeography and Botanical Inventory of Taiwain 12: 63-77.
CHO, S., S. JANG, S. CHAE, K. M. CHUNG, Y. H. MOON, G. AN, AND S. K. JANG. 1999. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Molecular Biology 40: 419-429.
COEN, E. S., AND E. M. MEYEROWITZ. 1991. The war of the whorls - genetic interactions controlling flower development. Nature 353: 31-37.
COLOMBO, L., J. FRANKEN, E. KOETJE, J. VANWENT, H. J. M. DONS, G. C. ANGENENT, AND A. J. VANTUNEN. 1995. The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1868.
CRONQUIST, A. 1992. An integrated system of classification of flowering plants. 2nd. ed. Columbia University Press, New York, USA. 1262 pp.
DE BODT, S., J. RAES, Y. VAN DE PEER, AND G. THEISSEN. 2003. And then there were many: MADS goes genomic. Trends in Plant Science 8: 475-483.
DITTA, G., A. PINYOPICH, P. ROBLES, S. PELAZ, AND M. F. YANOFSKY. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14: 1935-1940.
DONOGHUE, M. J., AND J. A. DOYLE. 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Page 17-45. In: Crane, P. R. and S Blackmone (eds.). Evolution, systematic, and fossil history of the Hamamelidae. Vol. 1. Introduction and ''lower'' Hamamelidae. Systematics Association Special volume 40A. Clarendon Press, Oxford, UK.
EGEA-CORTINES, M., H. SAEDLER, AND H. SOMMER. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO Journal 18: 5370-5379.
ENDRESS, P. K. 1986. Floral structure, systematics, and phylogeny in Trochodendrales. Annals of the Missouri Botanical Garden 73: 297-324.
ENDRESS, P. K. 1994. Floral structure and evolution of primitive angiosperms - recent advances. Plant Systematics and Evolution 192: 79-97.
FERRARIO, S., R. G. IMMINK, AND G. C. ANGENENT. 2004. Conservation and diversity in flower land. Current Opinion in Plant Biology 7: 84-91.
GOETHE, J. W. V. 1749-1832. Goethe’s botanical writings (translated by Bertha Mueller). Ox Bow Press, Woodbridge, USA. 258 pp.
GLOVER, B. J., AND C. MARTIN. 2002. Evolution of adaptive petal cell morphology. Page 160-172. In: Cronk, Q. C. B., Bateman, R. M., Hawkins, J. A. (eds.). Developmental Genetics and Plant Evolution. Taylor & Francis Inc. New York City, NY, USA.
GLOVER, B. J., M. PEREZ-RODRIGUEZ, AND C. MARTIN. 1998. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor. Development 125: 3497-3508.
GU, Q., C. FERRANDIZ, M. F. YANOFSKY, AND R. MARTIENSSEN. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125: 1509-1517.
HALLIER, H. 1901. Über die Verwandschaftverhältnisse der Ursprung der Sympetalen und Apetalen und die Anordnung der Angiospermen überhaupt. Vorstudien zum Entwurf eines Stammbaums der Blütenpflanzen. Abhandlungen aus dem Gebiete der Naturwissenschaften, herausgegeben vom Naturwissenschaftlichen Verein in Hamburg 16: 1-112.
HILU, K. W., T. BORSCH, K. MULLER, D. E. SOLTIS, P. S. SOLTIS, V. SAVOLAINEN, M. W. CHASE, M. P. POWELL, L. A. ALICE, R. EVANS, H. SAUQUET, C. NEINHUIS, T. A. B. SLOTTA, J. G. ROHWER, C. S. CAMPBELL, AND L. W. CHATROU. 2003. Angiosperm phylogeny based on matK sequence information. American Journal of Botany 90: 1758-1776.
HONMA, T., AND K. GOTO. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
HOOT, S. B., S. MAGALLON, AND P. R. CRANE. 1999. Phylogeny of basal eudicots based on three molecular data sets: atpB, rbcL, and 18S nuclear ribosomal DNA sequences. Annals of the Missouri Botanical Garden 86: 1-32.
HUANG, H., M. TUDOR, C. A. WEISS, Y. HU, AND H. MA. 1995. The Arabidopsis MADS-box gene Agl3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Molecular Biology 28: 549-567.
HUELSENBECK, J. P., AND F. RONQUIST. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
IRISH, V. F. 1999. Patterning the flower. Developmental Biology 209: 211-220.
IRISH, V. F. 2003. The evolution of floral homeotic gene function. Bioessays 25: 637-646.
KAY, Q. O. N., H. S. DAOUD, AND C. H. STIRTON. 1981. Pigment distribution, light-reflection and cell structure in petals. Botanical Journal of the Linnean Society 83: 57-83.
KAZAN, K. 2003. Alternative splicing and proteome diversity in plants: the tip of the iceberg has just emerged. Trends in Plant Science 8: 468-471.
KIM, S., D. E. SOLTIS, P. S. SOLTIS, M. J. ZANIS, AND Y. SUH. 2004. Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody? Molecular Phylogenetics and Evolution 31: 16-30.
KIM, S., J. KOH, H. MA, Y. HU, P. K. ENDRESS, B. A. HAUSER, M. BUZGO, P. S. SOLTIS, AND D. E. SOLTIS. 2005. Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): Support for the bracteate origin of the calyptra. International Journal of Plant Sciences 166: 185-198.
KOMEDA, Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55: 521-535.
KRAMER, E. M., AND V. F. IRISH. 1999. Evolution of genetic mechanisms controlling petal development. Nature 399: 144-148.
KRAMER, E. M., AND V. F. IRISH. 2000. Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. International Journal of Plant Sciences 161: S29-S40.
KRAMER, E. M., R. L. DORIT, AND V. F. IRISH. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149: 765-783.
KRAMER, E. M., V. S. DI STILIO, AND P. M. SCHLUTER. 2003. Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. International Journal of Plant Sciences 164: 1-11.
KRAMER, E. M., M. A. JARAMILLO, AND V. S. DI STILIO. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166: 1011-1023.
LI, H.L., AND S.M. CHAW. 1996. Trochodendraceae. In: Huang, T.-C. et al. (eds.). Flora of Taiwan, 2nd ed. 2: 504-505. Editorial Committee of the Floral of Taiwan.
LITT, A., AND V. F. IRISH. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821-833.
MA, H., M. F. YANOFSKY, AND E. M. MEYEROWITZ. 1991. Agl1-Agl6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development 5: 484-495.
MADDISON, D. R., AND W. P. MADDISON. 2000. MacClade 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA, USA.
MANDEL, M. A., AND M. F. YANOFSKY. 1995. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7: 1763-1771.
MARTIN, C., K. BHATT, K. BAUMANN, H. JIN, S. ZACHGO, K. ROBERTS, Z. SCHWARZ-SOMMER, B. GLOVER, AND M. PEREZ-RODRIGUES. 2002. The mechanics of cell fate determination in petals. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 357: 809-813.
MIZUKAMI, Y., H. HUANG, M. TUDOR, Y. HU, AND H. MA. 1996. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8: 831-845.
MULLER, B. M., H. SAEDLER, AND S. ZACHGO. 2001. The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant Journal 28: 169-179.
NG, M., AND M. F. YANOFSKY. 2000. Three ways to learn the ABCs. Current Opinion in Plant Biology 3: 47-52.
PARKINSON, C. L., K. L. ADAMS, AND J. D. PALMER. 1999. Multigene analyses identify the three earliest lineages of extant flowering plants. Current Biology 9: 1485-1488.
PELAZ, S., G. S. DITTA, E. BAUMANN, E. WISMAN, AND M. F. YANOFSKY. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.
PELAZ, S., C. GUSTAFSON-BROWN, S. E. KOHALMI, W. L. CROSBY, AND M. F. YANOFSKY. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. Plant Journal 26: 385-394.
PEREZ-RODRIGUEZ, M., F. W. JAFFE, E. BUTELLI, B. J. GLOVER, AND C. MARTIN. 2005. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development 132: 359-370.
PNUELI, L., M. ABU-ABEID, D. ZAMIR, W. NACKEN, Z. SCHWARZ-SOMMER, AND E. LIFSCHITZ. 1991. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant Journal 1: 255-266.
POLLOCK, R., AND R. TREISMAN. 1991. Human Srf-related proteins - DNA-binding properties and potential regulatory targets. Genes & Development 5: 2327-2341.
QIU, Y. L., M. W. CHASE, S. B. HOOT, E. CONTI, P. R. CRANE, K. J. SYTSMA, AND C. R. PARKS. 1998. Phylogenetics of the Hamamelidae and their allies: Parsimony analyses of nucleotide sequences of the plastid gene rbcL. International Journal of Plant Sciences 159: 891-905.
RIECHMANN, J. L., AND E. M. MEYEROWITZ. 1997. MADS domain proteins in plant development. Biological Chemistry 378: 1079-1101.
RIECHMANN, J. L., B. A. KRIZEK, AND E. M. MEYEROWITZ. 1996a. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, USA 93: 4793-4798.
RIECHMANN, J. L., M. WANG, AND E. M. MEYEROWITZ. 1996b. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research 24: 3134-3141.
SAVOLAINEN, V., M. W. CHASE, S. B. HOOT, C. M. MORTON, D. E. SOLTIS, C. BAYER, M. F. FAY, A. Y. DE BRUIJN, S. SULLIVAN, AND Y. L. QIU. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49: 306-362.
SIEBOLD, P. F., AND J. G. ZUCCARINI. 1835. Trochodendron. Flora japonica 1: 83-86. Lugduni Batavorum: apud Auctorem.
SMITH, A. C. 1945. A taxonomic review of Trochodendron and Tetracentron. Journal of the Arnold Arboretum 26: 123-142.
SOLTIS, D. E., P. S. SOLTIS, M. W. CHASE, M. E. MORT, D. C. ALBACH, M. ZANIS, V. SAVOLAINEN, W. H. HAHN, S. B. HOOT, M. F. FAY, M. AXTELL, S. M. SWENSEN, L. M. PRINCE, W. J. KRESS, K. C. NIXON, AND J. S. FARRIS. 2000. Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean Society 133: 381-461.
SOLTIS, P. S., AND D. E. SOLTIS. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051-7057.
STELLARI, G. M., M. A. JARAMILLO, AND E. M. KRAMER. 2004. Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Molecular Biology and Evolution 21: 506-519.
SU, H. J. 2004. Duplication and evolution of floral B-class homeotic genes in eudicots. Institute of Ecology and Evolutionary Biology, National Taiwan University. Master thesis.
SWOFFORD, D. L. 2002. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates Inc., Sunderland, MA, USA.
TAKHTAJAN, A. L. 1991. Evolutionary trends in flowering plants. Columbia University Press, New York, NY, USA. 241 pp.
TAKHTAJAN, A. L. 1997. Diversity and classification of flowering plants. Columbia University Press, New York, NY, USA. 643 pp.
THEISSEN, G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4: 75-85.
THEISSEN, G., AND H. SAEDLER. 2001. Floral quartets. Nature 409: 469-471.
THEISSEN, G., A. BECKER, A. DI ROSA, A. KANNO, J. T. KIM, T. MUNSTER, K. U. WINTER, AND H. SAEDLER. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology 42: 115-149.
THOMPSON, J. D., T. J. GIBSON, F. PLEWNIAK, F. JEANMOUGIN, AND D. G. HIGGINS. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882.
THORNE, R. F. 1992. An updated phylogenetic classification of the flowering plants. Aliso 13: 365-389.
TZENG, T. Y., AND C. H. YANG. 2001. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant and Cell Physiology 42: 1156-1168.
vON BALTHAZAR, M., AND P. K. ENDRESS. 2002. Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. International Journal of Plant Sciences 163: 847-876.
WEBERLING, F. 1989. Morphology of flowers and inflorescences. Press Syndicate of the University of Cambridge. New York City, NY, USA. 405 pp.
WEIGEL, D., AND E. M. MEYEROWITZ. 1993. Activation of floral homeotic genes in Arabidopsis. Science 261: 1723-1726.
WEIGEL, D., AND E. M. MEYEROWITZ. 1994. The ABCs of floral homeotic genes. Cell 78: 203-209.
WILLIAM, D. A., Y. SU, M. R. SMITH, M. LU, D. A. BALDWIN, AND D. WAGNER. 2004. Genomic identification of direct target genes of LEAFY. Proceedings of National Academy of Sciences, U S A 101: 1775-1780.
ZAHN, L. M., J. LEEBENS-MACK, C. W. DEPAMPHILIS, H. MA, AND G. THEISSEN. 2005a. To B or not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Journal of Heredity 96: 225-240.
ZAHN, L. M., H. KONG, J. H. LEEBENS-MACK, S. KIM, P. S. SOLTIS, L. L. LANDHERR, D. E. SOLTIS, C. W. DEPAMPHILIS, AND H. MA. 2005b. The Evolution of the SEPALLATA subfamily of MADS-box genes: A pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169: 2209-2223.
ZAVADA, M. S., AND D. L. DILCHER. 1986. Comparative pollen morphology and its relationship to phylogeny of pollen in the Hamamelidae. Annals of the Missouri Botanical Garden 73: 348-381.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔