跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鐘敏禕
研究生(外文):Min-yi Chung
論文名稱:苦瓜植物生長素輸入運送蛋白基因之選殖與啟動子活性分析
論文名稱(外文):Molecular Cloning and Promoter Activity Analysis of Auxin Influx Carrier Genes from Momordica charantia
指導教授:杜宜殷
指導教授(外文):Yi-Yin Do
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
畢業學年度:93
語文別:中文
論文頁數:71
中文關鍵詞:苦瓜植物生長素
外文關鍵詞:bitter gourdauxin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為選殖苦瓜(Momordica charantia)植物生長素輸入運送蛋白基因McLAX1,以pMAIC11 cDNA為探針,篩選苦瓜基因組庫,選取基因組選殖系λMAIC1,進行次選殖及基因全長定序分析,得到基因序列4,346 bp及其啟動子序列2,106 bp。McLAX1基因具有八個顯子和七個隱子,顯子與隱子連接部位之核苷酸序列除第一個隱子外均符合GT-AG rule,轉譯起始密碼位於第一個顯子,共可解碼469個胺基酸,預測之分子量為52.70 kDa,pI值為8.28。McLAX1與pMAIC11 cDNA的核苷酸序列相似度為99.3%,所演繹之胺基酸序列相似度為99.1%,推測其可能為等位基因,而McLAX1與其他作物之植物生長素輸入運送蛋白之胺基酸序列相比,同源性介於61%到82%之間。依啟動子序列比對分析結果顯示,McLAX1基因啟動子具有植物生長素、離層酸、茉莉酸、水楊酸、乙烯、光、低溫、創傷等保守性cis-acting elements。
為了進一步分析McLAX基因啟動子的活性,將McLAX2之啟動子片段構築於報導基因GUS上游形成表達質體,傳送至蝴蝶蘭花瓣與苦瓜幼葉、成熟葉圓片、雄花花瓣及雌花花瓣等組織器官,進行啟動子活性暫時性表現分析,試驗結果顯示McLAX2之啟動子活性,於苦瓜雌花花瓣中,較高於CaMV35S啟動子的活性。另外,經由農桿菌媒介法,進行阿拉伯芥與菸草之穩定性轉殖,以南方氏雜交分析確認轉殖株後,進行GUS活性組織化學染色分析,顯示其於阿拉伯芥的葉片、花梗、小花序、雌蕊、雄蕊、果莢,與菸草的根部、葉片均具有活性。
To obtain auxin influx carrier gene McLAX1 from bitter gourd(Momordica charantia), pMAIC11 cDNA was used as the probe for screening the genomic library. Based on restriction map and Southern analysis, λMAIC1 was delegated to be subcloned and sequenced. The McLAX1 gene in λMAIC1 is consisted of 4,346 base pairs with eight exons and seven introns. The splice junctions between introns and extrons of McLAX1 are according to the GT/AG rule except the first intron. The start codon locates in the first exon. McLAX1 encodes a polypeptide containing 469 amino acids with a calculated molecular mass of 52.70 kDa and a predicted isoelectric point of 8.28. The identity of nucleotide sequences and amino acid sequences between λMAIC1 and pMAIC11 cDNA is 99.3% and 99.1%, respectively, therefore the gene in λMAIC1 was supposed to be an allele of McLAX1. The homology of the amino acid sequences of McLAX1 with AUX1 and AUX1-like proteins is 61%∼82%. According to the result of analysis for upstream promoter sequence of McLAX1, several predicted responsive elements related to auxin, abscisic acid, Methyl jasmonate, salicylic acid, ethylene, light, low-temperature, and wounding were found.
To analyze the promoter activity of McLAX, the plasmid 20P12 containing McLAX2::GUS had been constructed. The expression plasmid was transformed into petal discs of Phalaenopsis, young leaf, mature leaf, male flower, and female flower of bitter gourd via particle bombardment. The result of transient expression analysis indicated that the promoter activity of McLAX2 in female flower of bitter gourd is higher than CaMV 35S promoter. The stable expression analysis in Arabidopsis and tobacco was performed by Agrobacterium-mediated transformation. Southern analysis had verified the transfomants. The results of GUS histochemical staining indicated that the promoter activity of McLAX2 exists in the leaf, inflorescence, stamen, pistil and pod of Arabidopsis, and in the leaf and root of tobacco.
中文摘要 1
英文摘要 2
壹、前言 4
貳、前人研究 5
一、植物生長素對著果之影響 5
二、植物生長素之運輸 6(一) 植物生長素之極性運輸 7
(二) 植物生長素之非極性運輸 8
三、植物生長素輸入運送蛋白 8
(一) 植物生長素輸入運送蛋白基因及胺基酸序列特性 8
(二) 植物生長素輸入運送蛋白的功能 9
1. 根部的向地性 9
2. 側根的形成 9
3. 芽栓的形成 10
4. 葉原體的形成 10
5. 苦瓜果實發育的相關研究 11
四、植物生長素相關之基因調控 11
參、材料與方法 13
一、材料 13
(一) 植物材料 13
(二) 篩選用探針 13
(三) 基因組庫 13
二、方法 13
(一)苦瓜基因組庫之選殖 13
1. 寄主細胞之製備 13
2. 核酸探針之製備 14
3. 基因組庫之篩選 14
4. 噬菌體之大量複製 15
5. 噬菌體DNA之抽取 15
(二)限制酶圖譜分析 16
(三) 次選殖 17
1. 大腸桿菌勝任細胞之製備 17
2. 接合反應 17
3. 轉形反應 17
4. 質體DNA之小量製備 17
(四) 轉殖質體之構築 18
1. MCm-AIC2基因啟動子轉殖質體之構築 18
2. 質體DNA之大量製備 18
(五) 基因槍法之暫時性表現分析 20
1. 微粒子製備與DNA包裹 20
2. 基因槍轉殖法 21
3. GUS組織化學染色法 21
(六) 農桿菌轉形 21
1. 農桿菌勝任細胞之製備 21
2. 轉形反應 22
3. 農桿菌質體DNA之小量製備 22
(七) 阿拉伯芥之基因轉殖及轉殖株之篩選 22
1. 阿拉伯芥之基因轉殖 22
2. 轉殖株之抗生素篩選 23
(八) 菸草之基因轉殖及篩選 23
(九) 植物基因組DNA之抽取 24
(十) 南方氏雜交分析 24
肆、結果 25
一、 苦瓜基因組庫之篩選 25
(一) 苦瓜McLAX1基因組選殖系之限制酶圖譜分析 25
(二) McLAX1基因之序列分析 25
(三) McLAX1蛋白之胺基酸序列分析 37
(四) McLAX1基因啟動子之序列分析 37
二、苦瓜植物生長素輸入運送蛋白基因啟動子活性之暫時性表現分析 47
三、McLAX2基因啟動子活性之穩定性表現分析 47
(一) 阿拉伯芥轉殖株之分析 47
(二) 菸草轉殖株之分析 52
伍、討論 56
一、植物生長素輸入運送蛋白基因之結構 56
二、植物生長素輸入運送蛋白之特徵 56
三、苦瓜植物生長素輸入運送蛋白基因之啟動子序列分析 60
四、苦瓜植物生長素輸入運送蛋白基因之啟動子活性分析 61
陸、結語 64
柒、參考文獻 65
1.黃卓君. 2002. 苦瓜植物生長素輸入運送蛋白基因之選殖與分析. 國立台灣大學園藝系碩士論文. 89pp.
2.劉政道、李碩朋. 1995. 台灣農家要覽農作篇(二).財團法人豐年社. 台北. p.399-404.
3.Acciarri, N., F. Restaino, G. Vitelli, D. Perrone, M. Zottini, T. Pandolfini, A. Spena, and G. L. Rotino. 2002. Genetically modified parthenocarpic eggplants: Improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnol. 2: 4.
4.Arguello-Astorga, G. R. and L. R. Herrera-Estrella. 1996. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol. 112: 1151-1166.
5.Basch, E. S. Gabardi, and C. Ulbricht. 2003. Bitter melon (Momordica charantia): A review of efficacy and safety. American Society of Health-System Pharmacists 60: 356–359.
6.Baker, D. 2000. Vascular transport of auxins and cytokinins in Ricinus. Plant Growth Regul. 32: 157–160.
7.Berleth, T. 2001. Top-down and inside-out: Directionality of signaling in vascular and embryo delelopment. J. plant Growth Regul. 20: 14–21.
8.Bennett, M.J., A. Marchant, H. G. Green, S. T. May, S. P. Ward, P. A. Millner, A. R. Walker, B. Schulz, and K. A. Feldmann.1996. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273: 948–950.
9.Bennett, M.J., A. Marchant, S.T. May, and R. Swarup. 1998. Going the distance with auxin: Untravelling the molecular basis of auxin transport. Phil. Trans. R. Soc. Lond. B 353: 1511–1515.
10.de Billy, F., C. Grosjean, S. May, M. Bennett, and J. V. Cullimore. 2001. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol. Plant- Microbe Interact. 14: 267–277.
11.Bhalerao, R. P., J. Eklof, K. Ljung, A. Marchant, M. Bennett, and G. Sandberg. 2002. Shoot derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant journal 29: 325–332.
12.Breathnach, R., C. Benoist, K. O''Hare, F. Gannon, and P. Chambon.1978. Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. 75: 4853–4857.
13.Busk, P. K. and M. Pages. 1998. Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37: 425–435.
14.Chareonboonsit, S., W. E. Splittstoesser, and W. L. George. 1985. The effects of pollination methods and auxin applications upon parthenocarpic fruit set and development in tomato. Sci. Hort. 27: 1–8.
15.Dellaporta, S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rep. 1: 19–21.
16.Dunn, M. A., A. J. White, S. Vural, and M. A. Hughes. 1998. Identification of promoter elements in a low-tempeature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol. Biol. 49: 401–409.
17.Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.
18.Fischer, W. N., B. Andre’, D. Rentsch, S. Krolkiewicz, M. Tegeder, K. Breitkreuz, and W. B. Formmer. 1998. Amino acid transport in plants. Trends in plant science 3: 188–195.
19.Friml, J. 2003. Auxin transport - shaping the plant. Current Opinion in Plant Biology 6: 7–12.
20.Gälweiler, L., C. Guan, A. Muller, E. Wisman, K. Mendgen, A. Yephremov, and K. Palme. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226–2230.
21.Goldsmith, M. H. M. 1977. The polar transport of auxin. Ann. Rev. Plant Physiol. 28: 439–478.
22.Guilfoyle, T. J., G. Hagen, T. Ulmasov, and J. Murfett. 1998. How does auxin turn on genes? Plant Physiol. 118: 341–347.
23.Hanahan, D. 1983. Studies on transformation of Eschericherichia coli with plasmids. J. Mol. Biol. 166: 557–580.
24.Hagen, G. and T. Guilfoyle. 2002. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 49: 373–385.
25.Hofagen, R. and L. Willmitzer. 1988. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16: 9877.
26.Holsters, M. 1978. Characterization and sequence determination of the replicator region in the hairy-root-inducing plasmid pRiA4b. Mol. Gen. Genet. 163: 181–187.
27.Horsch, R. B., J. F. Fry, N. L. Hoffman, D. Eichholtz, S. G. Rogers, and R. T. Flraley. 1985. A simple and general mothod for transferring genes into plants. Science 227: 226–228.
28.Hu, Y., Q. Xie and N. H. Chua. 2003. The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. The Plant Cell 15: 1951–1961.
29.Hu, Z. and J. E. Poulton. 1997. Sequencing, genomic organization, and preliminary promoter analysis of a black cherry (R)-(+)-mandelonitrile lyase gene. Plant Physiol. 115: 1359–1369.
30.Itzhaki, H., J. M. Maxson, and W. R. Woodson. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-stransferase (GSTI) gene. Proc. Nadl. Acad. Sci. 91: 8925–8929.
31.Jones, A. M. 1998. Auxin transport: Down and out and up again. Science 282: 2201–2202.
32.Kamada, M., S. Yamasaki, N. Fujii, A. Higashitani, and H. Takahashi. 2003. Gravity-induced modification of auxin transport and distribution for peg formation in cucumber seedlings: possible roles for CS-AUX1 and CS-PIN1. Planta 218: 15–26.
33.Koncz C. and J. Schell. 1986. The promoter of T-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383–396.
34.Lee-Huang, S., P. L. Huang, P. L. Nara, H. C. Chen, H. F. Kung, P. Huang, and H. I. Huang. 1990. MAP 30: A new inhibitor of HIV-1 infection and replication. FEBS Lett 272: 12–18.
35.Lomax, T. L., G. K. Muday, and P. H. Rubery.1995. Auxin transport. In: Plant hormones: physiology, biochemistry, and molecular biology. P. J. Davies, ed(Dordrecht, the Netherlands: Kluwer academic publishers), p. 509–530.
36.Maher, E.P. and S. J. B. Martindale. 1980. Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochemical genetics 18:1041–1053.
37.Mapelli, S., C. Frova, G. Torti, and G. P. Soresssi. 1978. Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol. 19: 1281-1288.
38.Marchant, A., J. Kargul, S. T. May, P. Muller, A. Delbarre, C. Perrot-Rechenmann, and M. J. Bennett. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO journal 18: 2066–2073.
39.Marchant, A., R. Bhalerao, L. Casimiro, J. Eklof, P. J. Casero, M. Bennett, and G. Sandberg. 2002. AUX1 promotes lateral root formation by facilitating indole- 3- acetic acid distribution between sink and Source tissues in the Arabidopsis seedling. The plant cell 14: 589–597.
40.Mezzetti, B., L. Landi, T. Pandolfini, and A. Spena. 2004. The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol. 4: 4.
41.Ng, T. B., C. M. Wong, and W.W. Li. 1986. Insulin-like molecules in Momordica charantia seeds. J. Ethnopharmacol 15:107–117.
42.Nitsch, J. P.. 1952. Growth and morphogenesis of the strawberry as related to auxin. Amer. J. Bot. 37: 211-215.
43.Pandolfini, T., G. L Rotino, S. Camerini, R. Defez, and A. Spena. 2002. Optimisation of transgene action at the post-transcriptional level:high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnol. 2: 1.
44.Parry, G., A. Delbarre, A. Marchant, R. Swarup, R. Napier, C. Perrot-Rechenmann, and M. J. Bennett. 2001. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant Journal 25: 399–406.
45.Pastuglia, M., D. Roby, C. Dumas, and J. M. Cock. 1997. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell. 9: 49–60.
46.Rouster, J., R. Leah, J. Mundy, and V. Cameron-Mills. 1997. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11: 513–523.
47.Rubery, P.H. and A.R. Sheldrake. 1974. Carrier-mediated auxin transport. Planta 118:101–121.
48.Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory manual. 2nd edition. Cold Spring Habor Laboratory Press. NewYork. Vol. I, II, III.
49.Schnabel, E. L. and J. Frugoli. 2004. The PIN and LAX families of auxin transport genes in Medicago truncatula. Mol. Gen. Genomics 272: 420–432.
50.Schott, P. E. and K. Schelberger. 1989. Influence of two new auxin analogues on fruit set and quality of tomatoes. Acta. hort. 239:391-394.
51.Stern, R. A. and S. Gazit. 1999. The synthetic auxin 3,5,6 TPA reduces fruit drop and increases yield in ''Kaimana'' litchi. J. Hort. Sci. Biot. 74: 203-205.
52.Stieger, P. A., D. Reinhardt, and C. Kuhlemeier. 2002. The auxin influx carrier is essential for correct leaf positioning. Plant Journal 32: 509–517.
53.Swarup, R., J. Friml, A. Marchant, K. Ljung , G. Sandberg, G. Palme, and M. J.Bennett. 2001. Localisation of the auxin permease AUX1 in the Arabidopsis root apex reveals two novel functionally distinct hormone transport pathways. Genes Dev. 15: 2648–2653.
54.Swarup, R., J. Kargul, A. Marchant, D. Zadik, A. Rahman, R. Mills, A. Yemm, S. May, L. Williams, P. Millner, S. Tsurumi, I. Moore, R. Napier, I. D. Kerr, and M. J. Bennetta. 2004. Structure-Function Analysis of the Presumptive Arabidopsis Auxin Permease AUX1. The Plant Cell 16: 3069– 3083.
55.Takahashi, H., Kamada, M. Y. Yamasaki, N. Fujii, A. Higashitani, S. Aizawa,I. Yoshizaki, S. Mukai C, T. Shimazu, and K. Fufui. 2000. Morphogenesis in cucumber seedlings negatively controlled by gravity. Planta 210: 515–518.
56.Telanga, M., A. Srinivasana, A. Patankara, A. Harsulkara, V. Joshia, A. Damlea, V. Deshpandea, M. Sainania, P. Ranjekara, G. Guptab, A. Birahb, S. Ranib, M. Kacholec, A. Giria, and V. Guptaa. 2003. Bitter gourd proteinase inhibitors: potential growth inhibitors of Helicoverpa armigera and Spodoptera lituraPhytochemistry. Phytochemistry 63:643–652.
57.Tiwari, S. B., X. J. Wang, G. Hagen, and T .J. Guilfoyle. 2001. Aux/IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell 13: 2809–2822.
58.Tiwari, S.B., G. Hagen, and T. J. Guilfoyle. 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533-543.
59.Ulmasov, T., G. Hagen, and T. J. Guilfoyle. 1999. Activation and repression of transcription by auxin response factors. Proc. Natl. Acad. Sci. USA 96: 5844–5849
60.Yamada, T. P., C.J. Brooks, B. and T. Kosuge. 1985. Nucleotide sequence of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci. 82: 6522−6526.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top