跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/25 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂靜芳
研究生(外文):Ching-Fang Lu
論文名稱:綠竹筍乙烯受體之組胺酸激酶功能區塊的表現與檢定
論文名稱(外文):Expression and Characterization of the Histidine Kinase Domain of Bamboo Ethylene Receptor
指導教授:楊健志
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:100
中文關鍵詞:乙烯受體組胺酸激
外文關鍵詞:ethylenehistidine kinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
綠竹筍乙烯受體BERSJ2之組胺酸激酶功能區塊類似於細菌之二元訊息傳導系統之組胺酸激酶,並包含所有決定激酶活性保守區域 (motifs)。本論文以 Pichia pastoris 表現BERSJ2中HK功能區塊 (BHK)之重組蛋白質以研究其功能,並進一步以N端定序確定重組蛋白質之正確性,且經實驗確定BHK具有自我磷酸化之功能。為了探討組胺酸激酶功能區塊中用以接受磷酸根所必須保守存在之組胺酸所扮演之角色,本論文亦利用點突變法將保守存在H box中之His置換為Gln,並表現此重組蛋白質- BHK(H23Q)。有趣的是,經進一步分析激酶活性時發現 BHK(H23Q) 並未因His被突變而抑制其自我磷酸化之功能。此外,磷酸化胺基酸之酸鹼穩定性之結果顯示,磷酸化之BHK與BHK(H23Q) 皆可穩定存在於3M NaOH 與 1M HCl 溶液中,由此可知,BHK內被磷酸化之胺基酸可能為serine、threonine或是tyrosine。因此仍需進一步證實綠竹筍乙烯受體BERSJ2之自我磷酸化反應確實有別於阿拉伯芥之乙烯受體ETR1。本論文亦利用BERSJ2內GAF功能區塊之重組蛋白質製備綠竹筍乙烯受體之抗體,並以此抗體分析綠竹筍內乙烯受體的表現情形。但由於綠竹筍內乙烯受體蛋白質的表現量過低,故無法直接以免疫染色鑑定綠竹筍內乙烯受體的含量。
The histidine kinase domain in ethylene receptor of bamboo, BERSJ2, contains all the conserved motifs present in a conventional HK of bacterial two-component system. To characterize the function of HK domain in BERSJ2 , the HK domain of bamboo (BHK) was expressed in Pichia pastoris as a c-myc-His-tagged fusion protein. The expressed recombinant BHK protein was identified by N-terminal sequencing and displayed the avtivity of autophosphorylation. To study the function of the conserved histidine that was thought as the phosphorylation site, a mutant BHK(H23Q) was generated. It is interesting that the mutation of histidine did not abolish the autophosphorylation activity . The result showed that BHK and BHK(H23Q) appeared to have higher phosphorylation activity in the presence of Mn2+ , and no activity in the presence of Ca2+. The phosphorylated residue(s) of BHK and BHK(H23Q) was stable in 3M NaOH and 1M HCl which indicated that the phosphorylated amino acids were most likely serine, threonine or tyrosine. Further experiments are needed to demonstrate that autophosp- horylation of BHK protein is indeed different from the one of the Arabidopsis ETR1 ethylene receptors. Polyclonal antibody against BERSJ2 was raised using the recombinant GAF domain as antigen. Due to the possible low yield of ethylene receptor protein, we can not identity the presence of ethylene receptor by Western blot in bamboo.
目錄…………………………………………………………………………………………………………I
縮寫表……………………………………………………………………………………………………IV
摘要………………………………………………………………………………………………………VI
Abstract…………………………………………………………………………………………………VII

第一章 緒論…………………………………………………………………………………………1

1.1.植物賀爾蒙與植物生長發育…………………………………………………………………1
1.1.1植物賀爾蒙-乙烯……………………………………………………………………………1
1.2 乙烯訊息傳遞路徑……………………………………………………………………………2
1.2.1 乙烯受體………………………………………………………………………………………3
1.2.2 乙烯訊息之傳遞……………………………………………………………………4
1.2.3 綠竹筍之乙烯受體……………………………………………………………………………8
1.3 激酶蛋白質………………………………………………………………………………………8
1.3.1 二元訊息傳導系統………………………………………………………………………9
1.3.1.1 組胺酸激酶……………………………………………………………………………10
1.4 研究材料、動機與目的………………………………………………………………………11
1.4.1竹………………………………………………………………………………………………12
1.4.1.1竹的特殊生理現象…………………………………………………………………12
1.4.1.2 綠竹筍…………………………………………………………………………………13
1.4.2 Pichia postoris………………………………………………………………………………13
1.4.23 研究組胺酸激酶之動機………………………………………………………………15
1.5.2以與酵母菌Pichia pastoris 表現綠竹筍組胺酸激酶之動機………………16

第二章 材料與方法……………………………………………………………………………17

2.1 儀器設備…………………………………………………………………………………………17
2.2 材料…………………………………………………………………………………………………18
2.2.1 載體……………………………………………………………………………………………18
2.2.2 菌株……………………………………………………………………………………………18
2.2.2.1 大腸桿菌(E.coli)……………………………………………………………………18
2.2.2.2 酵母菌(Pachia pastoris)……………………………………………………………19
2.2.4 實驗動物 (Experiment animal) ………………………………………………………19
2.3 實驗藥品…………………………………………………………………………………………19
2.3.1 培養基………………………………………………………………………………………19
2.3.1.1 E. coli用培養基…………………………………………………………………………19
2.3.1.2 Pachia pastoris用培養基…………………………………………………………………………
2.3.1.3 動物用培養基……………………………………………………………………………21
2.3.2 藥品試劑………………………………………………………………………………………21
2.4 實驗方法…………………………………………………………………………………………24
2.4.1 聚合酶鏈鎖反應…………………………………………………………………………24
2.4.2 洋菜膠體電泳………………………………………………………………………………24
2.4.3 DNA 之分離與純化……………………………………………………………………24
2.4.4 T-A clonging…………………………………………………………………………………25
2.4.5 質體轉形……………………………………………………………………………………26
2.4.6 轉形菌株的篩選…………………………………………………………………………26
2.4.7 質體的抽取與鑑定………………………………………………………………………27
2.4.8組胺酸激酶表現載體之構築…………………………………………………………28
2.4.8.1尋找乙烯受體中之組胺酸激酶功能區塊……………………………………28
2.4.8.2 引子對的設計…………………………………………………………………………28
2.4.8.3 pGHK之構築…………………………………………………………………………29
2.4.8.4 pPHK 之構築……………………………………………………………………………29
2.4.9以定位點突變法構築組胺酸激酶突變株之表現質體………………………………29
2.4.9.1 引子對的設計……………………………………………………………………………29
2.4.9.2 pPH23Q 之構築………………………………………………………………………30
2.4.10 於P. pastoris中表現重組蛋白質………………………………………………………30
2.4.10.1 酵母菌轉形……………………………………………………………………………30
2.4.11 酵母菌轉形株之鑑定……………………………………………………………………31
2.4.12表現、純化及鑑定重組蛋白質…………………………………………………………32
2.4.12.1 重組蛋白質之表現……………………………………………………………………32
2.4.12.2 重組蛋白質之純化……………………………………………………………………32
2.4.13 蛋白質電泳分離及染色…………………………………………………………………33
2.4.13.1蛋白質電泳………………………………………………………………………………33
2.4.13.2 蛋白質膠片之染色及保存…………………………………………………………34
2.4.13.3 蛋白質免疫染色………………………………………………………………………34
2.4.14 蛋白質 N 端定序…………………………………………………………………………35
2.4.14.1 以胰蛋白酶切除重組蛋白質之N端修飾………………………………………35
2.4.14.2 蛋白質 N 端定序樣品之製備……………………………………………………35
2.4.15 組胺酸激酶之活性鑑定…………………………………………………………………36
2.4.15.1 自我磷酸化鑑定………………………………………………………………………36
2.4.15.2 磷酸化組胺酸之酸鹼穩定度分析………………………………………………36
2.4.16 乙烯受體之專一性抗體製備……………………………………………………………36
2.4.16.1 抗原製備………………………………………………………………………………36
2.4.16.2 抗原乳化………………………………………………………………………………37
2.4.16.3 小鼠免疫………………………………………………………………………………37
2.4.16.4 單株抗體之製備………………………………………………………………………38

第三章 結果與討論……………………………………………………………………………40

3.1 尋找綠竹筍乙烯受體之組胺酸激酶功能區塊 (BHK) ………………………………40
3.2 BHK 之功能預測………………………………………………………………………………40
3.3 以 pichia pastoris 表現 BHK 之重組蛋白質…………………………………………40
3.3.1 組胺酸激酶表現載體之構築……………………………………………………………40
3.3.2 酵母菌之轉形及鑑定……………………………………………………………………41
3.3.2.1 轉形測試………………………………………………………………………………42
3.3.2.2 酵母菌之轉形…………………………………………………………………………42
3.3.2.3 轉形酵母菌株之鑑定………………………………………………………………42
3.3.3 BHK 重組蛋白質之表現與鑑定………………………………………………………43
3.3.3.1 蛋白質之小量表現……………………………………………………………………44
3.3.3.2 最適表現之鑑定………………………………………………………………………44
3.3.3.3 BHK 之純化…………………………………………………………………………45
3.3.3.4 蛋白質定序……………………………………………………………………………46
3.3.3.4.1 胰蛋白酶部分切割BHK………………………………………………………46
3.3.4 BHK(H23Q) 重組蛋白質之表現與鑑定……………………………………………47
3.4 重組蛋白質分析………………………………………………………………………………48
3.4.1 重組蛋白質的構成分析…………………………………………………………………48
3.4.2 重組蛋白質之活性分析…………………………………………………………………48
3.4.2.1 BHK之活性分析………………………………………………………………………48
3.4.2.2 BHK(H23Q)之活性分析………………………………………………………………49
3.5 專一性抗體之製備及檢測……………………………………………………………………50
3.5.1 抗原製備………………………………………………………………………………………50
3.5.2 抗體製備………………………………………………………………………………………51
3.5.2.1 多株抗體之取得及單株抗體之製備………………………………………………51
3.5.2.2 綠竹筍內乙烯受體之分析……………………………………………………………52

第四章………………………………………………………………………………………………53

4.1 總結………………………………………………………………………………………………53
4.2 未來展望……………………………………………………………………………………………55
4.2.1自我磷酸化之受質胺基酸的鑑定………………………………………………………55
4.2.3單株抗體的製備………………………………………………………………………………56

參考文獻…………………………………………………………………………………………57

圖與表…………………………………………………………………………………………………62

附錄

附錄一、ZeocinTM……………………………………………………………………………………92
附錄二、Pichia pastoris 所使用之培養基介紹與使用目的………………………………93
附錄三、Condon usage of Pichia pastoris………………………………………………………94
附錄四、Integration of expression vector into Pichia genome at AOX1…………………95
附錄五、硫酸銨分劃表………………………………………………………………………………96

碩士論文口試問答摘要………………………………………………………………………………97
莊榮輝 (1985). 水稻澱粉合成脢之研究. 國立台灣大學農業化學研究所博士論文.
莊榮輝 (2000). 酵素化學與純化.
林秋宏 (2001). 綠竹筍蔗糖合成酶cDNA之選殖與檢定. 國立台灣大學農業化學研究所碩士論文.
謝陸盛 (2002). 綠竹葉與籜苯丙胺酸裂解酶之生化學研究. 國立台灣大學農業化學研究所碩士論文.
江秉諭 (2002). 綠竹筍乙烯受體cDNA之選殖與表現. 國立台灣大學農業化學研究所碩士論文.
曾勇祥 (2003). 綠竹不同生長階段之基因表現分析. 國立台灣大學微生所與生化學研究所碩士論文.

Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J.R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284, 2148-2152.
Bleecker, A.B. (1999). Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4, 269-274.
Bleecker, A.B., and Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16, 1-18.
Bleecker, A.B., Esch, J.J., Hall, A.E., Rodriguez, F.I., and Binder, B.M. (1998). The ethylene-receptor family from Arabidopsis: structure and function. Philos Trans R Soc Lond B Biol Sci 353, 1405-1412.
Boue, O., Farnos, O., Gonzalez, A., Fernandez, R., Acosta, J.A., Valdes, R., Gonzalez, L.J., Guanche, Y., Izquierdo, G., Suarez, M., Dominguez, I., Machado, H., Rodriguez, M., and Lleonart, R. (2004). Production and biochemical characterization of the recombinant Boophilus microplus Bm95 antigen from Pichia pastoris. Exp Appl Acarol 32, 119-128.
Cancel, J.D., and Larsen, P.B. (2002). Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129, 1557-1567.
Chang, C., and Shockey, J.A. (1999). The ethylene-response pathway: signal perception to gene regulation. Curr Opin Plant Biol 2, 352-358.
Chang, C., and Stadler, R. (2001). Ethylene hormone receptor action in Arabidopsis. Bioessays 23, 619-627.
Chang, C., Kwok, S.F., Bleecker, A.B., and Meyerowitz, E.M. (1993). Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539-544.
Chang, C., Clark, K., Wang, X., and Stewart, R. (1998). ''Two-component'' ethylene signaling in Arabidopsis. Symp Soc Exp Biol 51, 59-64.
Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., and Ecker, J.R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89, 1133-1144.
Chen, Y.F., Etheridge, N., and Schaller, G.E. (2005a). Ethylene signal transduction. Ann Bot (Lond) 95, 901-915.
Chen, Y.F., Randlett, M.D., Findell, J.L., and Schaller, G.E. (2002). Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277, 19861-19866.
Ciardi, J.A., Tieman, D.M., Jones, J.B., and Klee, H.J. (2001). Reduced expression of the tomato ethylene receptor gene LeETR4 enhances the hypersensitive response to Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact 14, 487-495.
Ciardi, J.K., Harrya. (2001). Regulation of Ethylene-mediated Responses at the Level of the Receptor. Annals of Botany 88, 813-822.
Clark, K.L., Larsen, P.B., Wang, X., and Chang, C. (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 95, 5401-5406.
Dutta, R., Qin, L., and Inouye, M. (1999). Histidine kinases: diversity of domain organization. Mol Microbiol 34, 633-640.
El-Sharkawy, I., Jones, B., Li, Z.G., Lelievre, J.M., Pech, J.C., and Latche, A. (2003). Isolation and characterization of four ethylene perception elements and their expression during ripening in pears (Pyrus communis L) with/without cold requirement. J Exp Bot 54, 1615-1625.
Gamble, R.L., Coonfield, M.L., and Schaller, G.E. (1998). Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci U S A 95, 7825-7829.
Gamble, R.L., Qu, X., and Schaller, G.E. (2002). Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128, 1428-1438.
Gao, Z., Chen, Y.F., Randlett, M.D., Zhao, X.C., Findell, J.L., Kieber, J.J., and Schaller, G.E. (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278, 34725-34732.
Guo, H., and Ecker, J.R. (2004). The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7, 40-49.
Guzman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513-523.
Hall, A.E., Chen, Q.G., Findell, J.L., Schaller, G.E., and Bleecker, A.B. (1999). The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121, 291-300.
Hall, A.E., Findell, J.L., Schaller, G.E., Sisler, E.C., and Bleecker, A.B. (2000). Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123, 1449-1458.
Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A., and Ecker, J.R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97, 383-393.
Hua, J., and Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94, 261-271.
Hua, J., Chang, C., Sun, Q., and Meyerowitz, E.M. (1995). Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269, 1712-1714.
Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R., and Meyerowitz, E.M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10, 1321-1332.
Huang, Y., Li, H., Hutchison, C.E., Laskey, J., and Kieber, J.J. (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33, 221-233.
Hwang, I., Chen, H.C., and Sheen, J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129, 500-515.
Imamura, A., Hanaki, N., Umeda, H., Nakamura, A., Suzuki, T., Ueguchi, C., and Mizuno, T. (1998). Response regulators implicated in His-to-Asp phosphotransfer signaling in Arabidopsis. Proc Natl Acad Sci U S A 95, 2691-2696.
Johnson, K.A., Sistrunk, M.L., Polisensky, D.H., and Braam, J. (1998). Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2. Plant Physiol 116, 643-649.
Kieber, J.J. (1997a). The ethylene signal transduction pathway in Arabidopsis. J Exp Bot 48, 211-218.
Kieber, J.J. (1997b). The ethylene response pathway in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48, 277-296.
Klee, H., and Tieman, D. (2002). The tomato ethylene receptor gene family: Form and function. Physiol Plant 115, 336-341.
Klumpp, S., and Krieglstein, J. (2002). Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem 269, 1067-1071.
Linder, S., Schliwa, M., and Kube-Granderath, E. (1996). Direct PCR screening of Pichia pastoris clones. Biotechniques 20, 980-982.
Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399.
Lohrmann, J., and Harter, K. (2002). Plant two-component signaling systems and the role of response regulators. Plant Physiol 128, 363-369.
Macauley-Patrick, S., Fazenda, M.L., McNeil, B., and Harvey, L.M. (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249-270.
Mita, S., Kawamura, S., and Asai, T. (2002). Regulation of the expression of a putative ethylene receptor, PeERS2, during the development of passion fruit (Passiflora edulis). Physiol Plant 114, 271-280.
Moussatche, P., and Klee, H.J. (2004). Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279, 48734-48741.
Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., and Inaba, A. (1998). Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118, 1295-1305.
Ouaked, F., Rozhon, W., Lecourieux, D., and Hirt, H. (2003). A MAPK pathway mediates ethylene signaling in plants. Embo J 22, 1282-1288.
Payton, S., Fray, R.G., Brown, S., and Grierson, D. (1996). Ethylene receptor expression is regulated during fruit ripening, flower senescence and abscission. Plant Mol Biol 31, 1227-1231.
Qin, L., Cai, S., Zhu, Y., and Inouye, M. (2003). Cysteine-scanning analysis of the dimerization domain of EnvZ, an osmosensing histidine kinase. J Bacteriol 185, 3429-3435.
Qu, X., and Schaller, G.E. (2004). Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136, 2961-2970.
Rasori, A., Ruperti, B., Bonghi, C., Tonutti, P., and Ramina, A. (2002). Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. J Exp Bot 53, 2333-2339.
Raz, V., and Ecker, J.R. (1999). Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661-3668.
Rieu, I., Wolters-Arts, M., Derksen, J., Mariani, C., and Weterings, K. (2003). Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217, 131-137.
Rodriguez, F.I., Esch, J.J., Hall, A.E., Binder, B.M., Schaller, G.E., and Bleecker, A.B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283, 996-998.
Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., and Meyerowitz, E.M. (1998). ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A 95, 5812-5817.
Schaller, G.E. (1997). Ethylene and cytokinin signalling in plants: the role of two-component systems. Essays Biochem 32, 101-111.
Schaller, G.E., and Bleecker, A.B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270, 1809-1811.
Schaller, G.E., Ladd, A.N., Lanahan, M.B., Spanbauer, J.M., and Bleecker, A.B. (1995). The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270, 12526-12530.
Sickmann, A., and Meyer, H.E. (2001). Phosphoamino acid analysis. Proteomics 1, 200-206.
Stepanova, A.N., and Ecker, J.R. (2000). Ethylene signaling: from mutants to molecules. Curr Opin Plant Biol 3, 353-360.
Stepanova, A.N., and Alonso, J.M. (2005). Ethylene signaling pathway. Sci STKE 2005, cm3.
Takahashi, H., Kobayashi, T., Sato-Nara, K., Tomita, K.O., and Ezura, H. (2002). Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J Exp Bot 53, 415-422.
Tanaka, T., Saha, S.K., Tomomori, C., Ishima, R., Liu, D., Tong, K.I., Park, H., Dutta, R., Qin, L., Swindells, M.B., Yamazaki, T., Ono, A.M., Kainosho, M., Inouye, M., and Ikura, M. (1998). NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature 396, 88-92.
Theologis, A. (1996). Plant hormones: more than one way to detect ethylene. Curr Biol 6, 144-145.
Theologis, A. (1998). Ethylene signalling: redundant receptors all have their say. Curr Biol 8, R875-878.
Ueguchi, C. (2002). [Two-component system in plants]. Tanpakushitsu Kakusan Koso 47, 1711-1716.
Wang, K.L., Li, H., and Ecker, J.R. (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14 Suppl, S131-151.
Wang, W., Hall, A.E., O''Malley, R., and Bleecker, A.B. (2003). Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci U S A 100, 352-357.
West, A.H., and Stock, A.M. (2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26, 369-376.
Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleecker, A.B., Chang, C., Meyerowitz, E.M., and Klee, H.J. (1997). A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15, 444-447.
Woeste, K., and Kieber, J.J. (1998). The molecular basis of ethylene signalling in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 353, 1431-1438.
Woeste, K.E., and Kieber, J.J. (2000). A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12, 443-455.

Yamasaki, S., Fujii, N., and Takahashi, H. (2000). The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41, 608-616.
Yanagisawa, S. (2004). [Cross-talk between signaling pathways in plants: controlling degradation of transcription factors is a key for cross-talk]. Tanpakushitsu Kakusan Koso 49, 2131-2138.
Zarembinski, T.I., and Theologis, A. (1994). Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26, 1579-1597.
Zhang, Z.G., Zhou, H.L., Chen, T., Gong, Y., Cao, W.H., Wang, Y.J., Zhang, J.S., and Chen, S.Y. (2004). Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol 136, 2971-2981.
Zhou, H., Lowry, D.F., Swanson, R.V., Simon, M.I., and Dahlquist, F.W. (1995). NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics. Biochemistry 34, 13858-13870.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top