跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 02:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江承先
研究生(外文):Cheng-Shian Jiang
論文名稱:類胰島素生長因子第二型飼料酵母之生產
論文名稱(外文):Production of insulin-like growth factor II feed yeast
指導教授:黃健雄黃健雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:72
中文關鍵詞:類胰島素生長因子飼料酵母
外文關鍵詞:insulin-like growth factorIGFfeed yeast
相關次數:
  • 被引用被引用:0
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是以飼料酵母菌Candida utilis BCRC 21645作為表現外源蛋白質重組吳郭魚類胰島素生長因子之宿主,載體pGAPZB屬於Pichia pastoris表現系統,目前商業上並無法取得屬於C. utilis表現系統之載體,P. pastoris與C. utilis之菌種親源性較為接近,因此將IGF2基因插入載體pGAPZB中,命名為pGAPZB-IGF2,作為本研究之表現質體。
由前人所構築之C. utilis轉形株無法正常表現吳郭魚重組蛋白質IGF2,經由PCR檢測,發現其structure gene部分即IGF2基因仍正常存在於染色體上,但在GAP promoter的前半段序列可能發生遺失或是序列變異,因此重新構築菌種。
重新構築之C. utilis轉形株,其表現載體pGAPZB-IGF2雖然正確嵌入異源宿主C. utilis之染色體,但是轉形效率明顯相較於已知研究為低,目前轉形菌株中並不能有效率的篩選出表現外源蛋白質IGF2的菌種,結論是利用異源的載體來構築表現菌種,由於該載體上不帶有同源的啟動子或是其他相同的序列,造成轉形效率偏低,同時無法有效的表現目標的外源蛋白質,並不是一個理想的表現系統;未來即使經過長時間的篩選,可能篩選到表現量較理想之轉形株,但是其嵌入基因之穩定性不佳,將不利於研究之持續進行,故此表現質體之改良為未來研究之主要發展方向。
Feed yeast Candida utilis BCRC 21645 was used as a host for tilapia insulin-like growth factor 2 expression. An expression plasmid pGAPZB-IGF2 was constructed by inserting igf2 gene into a commercial vector pGAPZB belonging to Pichia pastoris expression system, because a commercial vector for C. utilis was not available and P. pastoris is more relative to C. utilis than Saccharomyces cerevisiae.
The expression plasmid pGAPZB-IGF2 was transferred into C. utilis for the expression of tilapia igf2 gene. The recombinant IGF2 was produced as soluble protein, and its content was as high as 6.7% of the soluble protein (Hu, 2004). After six months of storage, IGF2 was not produced in C. utilis/pGAPZB-IGF2 . After PCR analysis, we found that a fragmaent of GAP promoter was lost in chromosome DNA of transformants.
The expression plasmid pGAPZB-IGF2 was prepared from Escherichia coli BL21(DE3) and linearized by Bgl II. Linearized pGAPZB-IGF2 was used to transform C. utilis by electroporation . The maximum transformation efficiency obtained was 16 transformants per μg of linearized pGAPZB-IGF2 at a field strength of 7.5 kv cm-1, an internal resistance of 800 Ω and 10 μg plasmid DNA. Although the DNA sequencing of PCR analysis demonstrated that linearized pGAPZB-IGF2 was successfully insert into chromosome DNA of C. utilis, igf2 gene was not expressed in transformants. There is no homologous sequence in pGAPZB-IGF2 result in the low transformation efficiency. We didn’t comfirm if the GAP promoter of P. pastoris work in C. utilis. The difference of GAP promoter between C. utilis and P. pastoris or the codon usage of structure gene in host may be concerned to explain why no igf2 gene expression in transformants. The transformants constructed before may be an exception of unstable insertion of igf2 gene, the expression of igf2 gene was not initialized by GAP promoter in expression plasmid pGAPZB-IGF2. We suggested to construct an expression plasmid with the homologous DNA sequence of C. utilis such as GAP promoter, rDNA gene or URA3 gene for the improvement of transformation efficiency and the expression of heterologous gene.
目錄
中文摘要…………………………………………….…………….……….…..……… I
英文摘要…………………………………………….………………….….…..……….II
目錄…………………………………………….…………………….…..…………….IV
表次…………………………………………….…………………….…..…………..VIII
圖次………………………………………….…………………….…..…………….....IX
縮寫表…………………………………………….…………………….…..…………..X
第一章 前言…………………………………………...….…………………….…..…1
一、 類胰島素生長因子.……………………………………………...……..….…1
二、 酵母菌異源性重組蛋白質之表現.………………………….……….………5
1. 酵母菌表現系統……………...……………………….………………...…5
2. 質體之穩定性……………...………………………….……………...……6
3. 後轉譯修飾作用……………...……………………….………………...…7
4. Candida utilis表現系統………………………………..…..………………8
5. 酵母菌之轉形……………...…………………………….…………...……9
三、 研究動機………..……………...……………....……………...…………...…10
四、 實驗架構………..……………...…………..………..………...…………...…12
第二章 材料與方法…………………...……………….………………………...…..13
一、 研究材料…..……..……………...…………………………...…………...…13
1. 菌株與質體…..……………...……………………………..…………..…13
2. 培養基…..……………...………………………………….……...………13
3. 藥品與試劑…..……………...……………………………..…………..…13
4. 儀器設備…..……………...…………………………….…………...……16
5. 緩衝液…..……………...…………………………………….…...………17
6. 質體抽取試劑…..……………...………………………….……………...18
7. DNA瓊脂膠體電泳試劑…..……………...…………….………………...18
8. 蛋白質膠體電泳試劑…..……………...…………………….…………...18
9. 蛋白質分子量標準品…..……………...…………………….…...………20
10. 常用之Tricine SDS-PAGE膠體溶液…...………..…………………….…20
二、 實驗方法…..……..……………...…………………………………...…...…21
1. 前人所構築C. utilis轉形株之IGF2表現…...…..………………...………21
2. 酵母菌染色體DNA之抽取….…………...…………………………….…21
3. 嵌入基因之PCR確認………...…………………………….………….….22
4. DNA瓊脂膠體電泳………...……………………………….………...…..22
5. 質體pGAPZB-IGF2之大量抽取………...……………………………….23
6. Bgl II 限制酶切及RNase處理………………………………………...…25
7. C. utilis細胞之轉形前處理…………………………….…………...…….25
8. C. utilis之電衝轉形法最適條件探討……………….……………………25
9. C. utilis轉形株復原期……………………...……………...…...…………26
10. C. utilis轉形株之篩選……………………...……………….………...…..26
11. 酵母菌破菌條件之探討…………………………………..………….…..26
12. 酵母菌轉形株之菌種保存………………………...……...……………...27
13. 酵母菌轉形株之培養………...…………………………...…...…………27
14. 酵母菌之破菌…………………………...………………...…...…………27
15. 酵母菌IGF2之表現…………………………………….…………………28
1) 培養時間對IGF2表現量之探討…………………………………....…28
2) 碳源對IGF2表現量之探討………………………………………....…28
3) 氮源對IGF2表現量之影響……………………………………..……..28
4) 糖蜜之蔗糖當量濃度對IGF2表現量之影響………...….…..….…….29
16. 酵母菌IGF2之純化……………...…………...…....……………….……..29
17. 分析方法…………………………………………….……..……….….…30
1) 菌體濃度測定..……………...………………………………….…...…30
2) 蛋白質濃度測定..……………...…………………………….………...30
3) 蛋白質色帶之強度分析..……………...…………………….………...30
4) 總糖濃度之測定..……………...………………………….…………...30
5) 葡萄糖濃度之測定……………...……………………………………..31
第三章 結果與討論….……..………………………………………...……………...32
一、 前人研究結果….……..……………...……………………………………...32
1. C. utilis轉形株之IGF2表現…………………………...……………...…..32
2. C. utilis轉形株之PCR檢測…………………………………...…………..32
二、 IGF2飼料酵母菌之重新構築….....…….……..………………….…………39
1. 質體pGAPZB-IGF2之大量製備……………………...……………...…..39
2. 酵母菌之電衝轉形法最適條件探討………………………...…………..39
1) 電場強度對轉形效率之影響.…………………………………..…...…39
2) 內電阻對轉形效率之影響……………….………………….….……...39
3) DNA量對轉形效率之影響………...…………………….…..…….…..43
4) 不同生長階段之酵母菌細胞對轉形效率之影響……………………..43
3. C. utilis轉形株之篩選………...…………………..………………………43
4. C. utilis轉形株之PCR鑑定…………………..…………………...………43
5. 最適破菌條件之探討………………………………...……………..……49
1) Lyticase活性對破菌效率之影響………………………………...…….49
2) Lyticase反應時間對破菌效率之影響……………………………...….49
3) 玻璃珠量對破菌效率之影響…….…………………………………….51
4) 研磨時間對破菌效果之影響…….…………………………….………51
6. 酵母菌轉形株之培養………………………………………….………….51
7. 酵母菌轉形株之IGF2表現…………………………………………..……51
1) 培養時間對IGF2表現量之影響………………….………………....…51
2) 碳源對IGF2表現量之影響………………………………….……....…54
3) 氮源對IGF2表現量之影響………………………………...……..…....54
4) 糖蜜之蔗糖當量濃度對IGF2表現量之影響…………………….…....54
8. 酵母菌IGF2之純化……………...………………….…..…....……….…..54
第四章 結論…..……..……………...…………………………………………...…...61
第五章 參考文獻…..……..……………...……………………………………......…67
Baker, J., J. P. Liu, E. J. Robertson and A. Efstratiadis. 1993. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75: 73-82.
Beggs, J. D. 1978. Transformation of yeast by a replicating hybrid plasmid. Nature 275:104-108.
Belcarz, A., G. Ginalska, J. Lobarzewski and Penel. 2002. The novel non-glycosylated invertase from Candida utilis (the properties and condition of production and purification). Biochim. Biophys. Acta. 1594:40-53
Boze, H., G. Moulin and P. Galzy. 1992. Production of food and fodder yeasts. Crit. Rev. Biotechnol. 12(1-2):65-86.
Bradford, M. M. 1976. Arapid and sensitive method for the uantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Chen, J. Y., C. Y. Chang, J. C. Chen, S. C. Shen and J. L. Wu. 1997. Production of biologically active recombinant tilapia insulin-like growth factor-II polypeptides in Escherichia coli cells and characterization of the genomic structure of the coding region. DNA Cell Biol. 16(7):883-92.
Cohick, W. S. and P. R. Clemmons. 1993. The insulin-like growth factors. Annu. Rev. Physiol. 55:131-153.
Conde, R., R. Cueva, G. Pablo, J. Polaina and G. Larriba. 2004. A search for hyperglycosylation signals in yeast glycoproteins. J. Biol. Chem. 279(42):3789-3798.
Constancia, M., M. Hemberger, J. Hughes, W. Dean, A. Ferguson-Smith, R. Fundele, F. Stewart, G. Kelsey, A. Fowden, C. Sibley, W. Reik. 2002. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417(6892):945-948.
Coutteau, P., P. Lavens and P. Sorgeloos. 1990. Baker’s yeast as a potential substitute for live algae in aquaculture diets: Artemia as a case study. J. World Aqua. Soc. 21:14–17.
Cregg, J. M., J. F. Tschopp, P. F. Brust, C. A. Stillman, R. Siegel, M. Akong, W. S. Craig, R. G. Buckholz, K. R. Madden, P. A. Kellaris, G. R. Devis, B. L. Smiley, J. Cruze, R. Torregrossa, G. Velicelebi and G. P. Thill. 1987 High level expressinand efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Bio/Technology 5:479-485
De Backer, M. D., D. Maes, S. Vandoninck, M. Logghe, R. Contreras and W. H. Luyten. 1999. Transformation of Candida albicans by electroporation. Yeast 15:1609–1618
DeChiara, T. M., A. Efstratiadis, E. J. Robertson. 1990 A growth- deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345(6270):78-80
De Deken, H., 1966. The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 44 (2):149–156.
Digan, M. E., S. V. Lair, R. A. Birerley, R. S. Siegel, M. E. Willams, S. B. Ellis, P. A. Kellaris, S. A. Provow, W. S. Craig, G. Velicelebi, M. M. Harpold and G. P. Thill. 1989. Continous production of novel lysozyme via secretion from the yeast, Pichia pastoris. Bio/Technology 7:160-164
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith. 1956.Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356
Dupont, J. and M. Holzenberger 2003. Biology of insulin-like growth factors in development. Birth Defect Res.(part C) 69:257-271
Epifanio, C. E., 1979. Comparison of yeast and algae diets for bivalve molluscs. Aquaculture 16:187–192.
Frulanetto, R. W., S. E. Harwell and K. K. Frick. 1994. Insulin-like growth factor-I induces cyclin-D1 expression in MG63 human osteosarcoma cells in vitro. Mol. Endocrinol. 8: 510-517.
Fukusho, K., 1980. Mass production of a copepod, Tigriopus japonicus, in combination culture with a rotifer, Brachionus plicatilis, fed omega yeast as a food source. Bull. Jpn. Soc. Sci. Fish 46:625–629.
Gietz, R. D. and R. H. Schiestl. 1995. Transforming yeast with DNA. Meth. Mol Cell Biol. 5:255–269
Giudice, L. C. 1992. Insulin-like growth factors and ovarian follicular development. Endocr. Rev. 13: 641-669
Gourmelen, M., Y. L. Bouc. F. Girard and M. Binoux. 1984. Serum level of insulin-like growth factor (IGF) and IGF binding protein in constitutionally tall children and adolescents. J. Clin. Endocrinol. Metab. 59: 1197-1203.
Hashimoto, H., H. Morikawa, Y. Yammada and A. Kimuara. 1985. A novel method for transformation of intact yeast cells by electroinjection of plasmid DNA. Appl. Microbiol. Bitechnol. 21:336-339
Hinnen, A., J. B. Hicks, and G. R. Fink. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. U.S.A. 75:1929-1933.
Hitzeman, R. A., F. E. Hagie, H. L. Levine, D. V. Goeddel, G. Ammerer, B. D. Hall. 1981. Expression of a human gene for interferon in yeast. Nature. 293(5835):717-22.
Hober, S., J.L. Ljung, M. Uhlen and B. Nilsson. 1999. Insulin-like growth factor I and II unable to form and maintain their native disulfides under in vivo redox conditions. FEBS Lett. 443: 271-276.
Hu, Shao-Yang, Jen-Leih Wu and Jan-Hsiung Huang. 2004. Production of tilapia insulin-like growth factor-2 in high cell density cultures of recombinant Escherichia coli. J. Biotechnol. 107:161–171
Hu, Shao-Yang. 2004. Studies on the expression and production conditions of Tilapia insulin-like growth factor-2 in Escherichia coli and Candida utilis. Doctor dissertation. Institute of microbiology and biochemistry. National Taiwan University. Taipei, Taiwan, ROC.
Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163-168.
Janowicz, Z. A., K. Melber, A. Merckelbach, E. Jacobs, N. Harford, M. Comberbach, C. P. Hollenberg. 1991. Simultaneous expression of the S and L surface antigens of hepatitis B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast. 7(5):431-43.
Jazwinski, S. M. 1990. Preparation of extracts from yeast. Meth. Enzymol.182:154-174
Kim, J. K., K. T. Tak and J. H. Moon. 1998. A continuous fermentation of Kluyeromyces fragilis for the production of a highly nutritious protein diet. Aquacult. Eng. 18:41–49.
Kondo, Keiji, Y. Miura, H. Sone, K. Kobayashi and H. Iijima. 1997 High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nature Biotechnol. 15(5):453-457.
Lawford, G. R., A. Kligeman and T. Williams. 1979. Production of high- quality edible protein from Candida yeast grown in continuous culture. Biotechnol. Bioeng. 21:1163–1173.
LeRoith, D., H. Werner, D. Beitner-Johnson and C. T. Jr. Roberts. 1995. Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr. Rev. 16(2): 143-63.
Lewin, B. 2000. Gene VII. 507-508. New York, Oxford University Press.
Martin, A. M., S. Goddard and P. Bemister. 1993. Production of Candida utilis biomass as aquaculture feed. J. Sci. Food Agric. 61:363–370.
Mathews, L. S., R. E. Hammer, R. R. Behringer, A. J. D’ercole, G. I. Bell, R. L. Brinster and R. D. Palmiter. 1988. Growth enhancement of transgenic mice expressing human insulin-like factor I. Endocrinol. 123: 2828-2833.
Miura Y, K. Kondo, H. Shimada, T. Saito, K. Nakamura and N. Misawa. 1998. Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnol Bioeng. 58(2-3):306-8.
Miller G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.
Miura, Y., M. Kettoku, M. Kato, K. Kobayashi and K. Kondo. 1999 High level production of thermostable alpha-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis. J. Mol. Microbiol. Biotechnol. 1(1):129-134.
Moriyama, S., F. G. Ayson and H. Kawauchi. 2000. Review: Growth regulation by insulin-like growth factor-I in fish. Biosci. Biotechnol. Biochem. 64 (8): 1553-1562.
Murphy, L. J., L. C. Murphy and H. G. Friesen. 1987. Estrogen induces insulin-like growth factor-1 expression in the rat uterus. Mol. Endocrinol. 1: 445-450.
Nosek, J., L. Adamikova, J. Zemanova, L. Tomaska, R. Zuerey and C. B. Mamoun. 2002. Genetic manipulation of the pathogenic yeast Candida parapsilosis. Curr. Genet. 42:27–35
Olvera-Novoa, M. A., C. A. Marti nez-Palacios and L. Livera-Castillo. 2002. Utilization of torula yeast (Candida utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquacul. Nutr. 8:257-264
Powell-Braxton, L., P. Hollingshead, C. Warburton, M. Dowd, S. Pitts-Meek, D. Dalton, N. Gillett and T. A. Stewart. 1993. IGF-I is required for normal embryonic growth in mice. Genes Dev. 7(12B):2609-17
Raa, J. 1990. Biotechnology in aquaculture and the fish processing industry: A success story in Norway. In: Voigt, M.N., Botta, J.R. (Eds.), Advances in Fisheries Technology and Biotechnology for Increased Profitability. Technomic Publishing Co, Inc, Lancastor, PA, USA.
Rajah, R., A. Khare, P. D. Lee and P. cohen. 1999. Insulin-like growth factor-binding protein-3 is partially responsible for high-serum-induced apoptosis in PC-3 prostate cancer cell. J. Endocrinol. 163:487-494
Rinderknecht, E. and R. E. Humbel. 1978. The amino acid sequence of human insulin-like growth factor 1 and its structural homology with proinsulin. J. Biol. Chem. 253: 2769-2776.
Rodriguez, L., F. P. Chavez, M. E. Gonzalez, L. Basabe, T. Rivero. 1998. Isolation and sequence analysis of the orotidine-5''-phosphate decarboxylase gene (URA3) of Candida utilis. Comparison with the OMP decarboxylase gene family. Yeast. 14(15):1399-406.
Rumsey, G. L., 1978. Recent advance in nutrition of salmonids. Salmonoid 2 (4):14–17.
Sambrook, J. and D. W. Russel. 2001. Molecular Cloning New York, Cold Spring Habor.
Shamblott, M.J. and T.T. Chen. 1992. Identification of a second insulin-like growth factor in a fish species. Proc. Natl. Acad. Sci. USA. 89:8913-8917.
Shen, S. H., L. Bastien, T. Nguyen, M. Fung and S. N. Slilaty. 1989. Synthesis and secretion of hepatitis B middle surface antigen by the methylotrophic yeast Hansenula polymorpha. Gene 84(2):303-309.
Thompson, J.R., E. Register, J. Curotto, M. Kurtz and R. Kelly. 1998. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571.
Van den Berg, J. A., K. J. van den Lakeren, A. J. J. van den Ooyen, T. C. H. M. Renniers, D. Rietveld, A. Schaap, A. J. Brake, R. J. Bishop, K. Schultz, D. Moyer, M. Richman and J. R. Shuster. 1990. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8:135-139.
Voronovsky, A. A., C. A. Abbas, L. R. Fayura, B. V. Kshanovska, K. V. Dmytruk, K. A. Sybirna and A. A. Sibirny. 2002. Development of a transformation system for the avinogenic yeast Candida famata. FEMS Yeast Res. 2:381–388
Zemanova, J., J. Nosek and L. Tomaska. 2004. High efficiency transformation of the pathogenic yeast Candida parapsilosis. Curr. Genet. 45: 183–186.
Ziino, M., R. B. Lo Curto, F. Salvo, D. Signorino, B. Chiofalo and D. Giuffrida. 1999. Lipid composition of Geotrichum candidum single cell protein grown in continuous submerged culture. Biores. Technol. 67: 7–11.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文