跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯翠玲
研究生(外文):Tsui-Ling Ko
論文名稱:發育中鼷鼠松果體與腦下垂體後葉之神經元中間絲的表現
論文名稱(外文):The Expression of Neuronal Intermediate Filaments in the Developing Mouse Epiphysis and Neurohypophysis
指導教授:盧國賢盧國賢引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:解剖學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:101
中文關鍵詞:發育松果體腦下垂体後神經元中間絲
外文關鍵詞:developpinealposterior lobe of pituitaryneuronal intermediate filaments
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
松果體與腦下垂體後葉均由間腦區的中央神經管發育而來,所以與非神經性來源之腺體組織結構不同。分泌褪黑激素的松果體內具有各種神經元特質的細胞,但即至目前為止,對此類細胞的屬性, 功能與發育一直未有完整的了解。相對的,腦下垂體後葉主要由下視丘中分泌催產激素之室旁核和分泌抗利尿激素之視上核所延伸的軸突與腦下垂體細胞所組成。 同樣的我們對於腦下垂體後葉的發育與腦下垂體細胞所扮演的角色亦仍有諸多不明瞭之處。神經元中間絲包含了α-internexin, peripherin以及神經三合體蛋白(NFL, NFM和NFH)。在發育過程中,α-internexin 與 peripherin會在周邊神經系統與中樞神經系統中大量表現。即至成體時,α-internexin多存在於中樞神經系統中; 而peripherin則存在於周邊神經系統內。在神經發育的時程中,較低分子量的神經元中間絲較早出現,先形成起始的架構,陸續較高分子量的神經元中間絲繼而產生聚合的作用。本研究的目的即以神經元中間絲為觀點,探討同樣由中央神經管為發生起源的松果體與腦下垂體後葉於發育時之表現。
利用免疫組織化學法與西方點漬法所得之結果,α-internexin 與 peripherin均於出生後21天時在松果體與腦下垂體後葉內之表現趨穩定。神經三合體蛋白,則在出生後90天的松果體與出生後30天的腦下垂體才開始有穩定的表現。不同年齡層的鼷鼠松果體內,均具有可以同時表達α-internexin 與 peripherin的細胞。 細胞體內產生神經元中間絲堆積之現象則發生於趨近老年鼷鼠的松果體中。以原位雜交與RT-PCR所得結果,證實鼷鼠松果體內確實具有自行合成α-internexin 與 peripherin的細胞。觀察發育變化的時程,松果體內測定出α-internexin- 與 peripherin- mRNA的細胞比例與蛋白質表現的結果相符,也於出生後7天時為最高表達期。綜合標定蛋白質與測定mRNA之結果,得知鼷鼠松果體中,不論在何種年齡層,表現α-internexin的細胞所佔之比率均高於Peripherin。運用原位雜交法觀察鼷鼠的腦下垂體後葉,意外的發現pituicytes具有α-internexin 與 peripherin的mRNA。再以RT-PCR的方法,也測得腦下垂體後葉具有α-internexin與NFM mRNA的表現。
由神經元中間絲在發育中松果體與腦下垂體內的表現,得知鼷鼠的腦下垂體後葉開始發育及其發育成熟的時間點均較松果體早,但鼷鼠松果體內之細胞多樣性與複雜性則較腦下垂體後葉高。至於分佈於周圍神經系統的peripherin,同時也存在於由中樞神經組織發育而來的松果體與腦下垂體後葉中,對此現象我們需有更多的觀察與後續之研究來加以探討。
The mammalian epiphysis (pineal gland) and neurohypophysis (posterior lobe of pituitary gland) originated ependymal cell of the roof and the floor of the third ventricle from central nerve canal respectively. In certain species, the pineal gland contains neurons and/or neuron-like peptidergic cells, The nature and cytological features of these neuronal cells, in addition to the pinealocytes, interstitial cells need to be classified. Posterior pituitary consists of pituicytes, the modified astrocytes and the predominant cellular type in the neurohypophysis, Development and the role of pituicytes still has many aspects remain to be clarified so far; and axons, originating from neurons in supraoptic and paraventricular nuclei synthesizing vasopressin and oxytocin. The neuronal intermediate filaments include not only the neurofilament triplet proteins but also α-internexin and peripherin. Both α-internexin and peripherin are expressed in the neurons of CNS and PNS during development. In adult, peripherin is found abundantly in the neurons of peripheral nervous system, and α-internexin is present mainly in the neurons of central nervous system. We employ neuronal intermediate filaments as probes into developing central neural glands of mouse.
Results from the immunohistochemistry and Western blot indicated that, not only pineal but also posterior lobe of pituitary, both α-internexin and peripherin were start constants expression at P21 and the neuronal triplets proteins were steady display at P90 for pineal gland and at P30 for neurohypophysis. α-internexin and peripherin are colocalized in the perikarya of some cells in the different age of mouse pineal gland. In aged (P360) mouse pineal gland, the expression of neuronal intermediate filaments is augmented as compare with that of the other adult stages. Results from the in situ hybridization and RT-PCR, showed that the number of the mRNA labeling cells of α-internexin and/or peripherin at P7 were the most numerous among all the age stages in mouse pineal. Taken all data together, we concluded that α-internexin-mRNA positive cells are generally more numerous than peripherin-mRNA positive cells during development, and therefore, we suggested that α-internexin-mRNA positive cells were more widely spread than peripherin-mRNA positive cells in pineal gland. In the neurohypophysis, by the in situ hybridization, the mRNAs of α-internexin and peripherin were unexpectedly found in the pituicytes. α-Internexin and NFM mRNAs were also detected in neurohypophysis of developing mouse by mean of RT-PCR. More studies are needed to elucidate the neuronal nature of these specialized glial cells, pituicytes in the neurohypophysis.
In summary, neurohypophysis is earlier than epiphysis not only in start developing time but also in mature period. The phenomenon may cause by more variety and complexity of pineal gland than posterior lobe of pituitary. That needs more investigation about both central glands existing peripherin.
目 錄
目錄------------------------------------------------------------------------------II
英文縮寫與全文對照表-----------------------------------------------------III
中文摘要-----------------------------------------------------------------------1
英文摘要-----------------------------------------------------------------------3
壹、緒論-----------------------------------------------------------------------5
貳、材料與方法-------------------------------------------------------------16
參、結果
A. 發育中鼷鼠的松果體神經元中間絲之表現----------------------23
I. 一般光學顯微鏡觀察--------------------------------------------------------23
II. α-internexin與peripherin相關結果--------------------------------------24
1. 免疫螢光染色法------------------------------------------------------------24
2. 螢光雙重免疫染色---------------------------------------------------------25
3. 原位雜交(in situ hybridization)-------------------------------------------26
4. 蛋白質免疫螢光染色與mRNA表現之相關性-----------------------26
5. 統計分析---------------------------------------------------------------------27
III. 神經三合體蛋白相關結果------------------------------------------------27
1. 免疫組織化學染色法-----------------------------------------------27
2. 西方點漬法 (Western blot)---------------------------------------------- 29
B. 發育中鼷鼠的腦下垂體後葉神經元中間絲之表現--------------30
I. 一般光學顯微鏡觀察--------------------------------------------------------30
II. 免疫組織化學染色法-------------------------------------------------------31
1. α-internexin-------------------------------------------------------------------31
2. peripherin---------------------------------------------------------------------31
3. α-internexin與peripherin 雙重免疫螢光染色------------------------32
4. NFL----------------------------------------------------------------------------32
5. NFM---------------------------------------------------------------------------33
6. NFH----------------------------------------------------------------------------33
III. 西方點漬法 (Western blot) -----------------------------------------------34
IV. 原位雜交法 (in situ hybridization) --------------------------------------34
V. 反轉錄聚合酶鏈鎖反應,RT-PCR---------------------------------------35
肆、討論
A. 發育中鼷鼠的松果體神經元中間絲------------------------------- 36
B. 發育中鼷鼠腦下垂體後葉神經元中間絲--------------------------45
C. 發育中鼷鼠松果體與腦下垂體後葉之比較-----------------------49
伍、總結-----------------------------------------------------------------------52
陸、後續可再進行之實驗--------------------------------------------------53
柒、參考文獻-----------------------------------------------------------------54
捌、圖表說明-----------------------------------------------------------------62
Abe T and Shinohara T (1990) S-antigen from the rat retina and pineal gland have identical sequences. Exp. Eye Res. 51:111-112.
Araki M (2001) Developmental potency of cultured pineal cells: an approach to pineal developmental biology. Microsc. Res. Tech. 53:33-42.
Athlan ES, Sacher MG, Mushyncki ME (1997) Associations between intermediate filament proteins expressed in cultured dorsal root ganglion neurons. J. Neurosci. Res. 47:300-310.
Bäck N, Tyynelä M, Portier MM, Virtanen I, Soinila S (1995) Distribution of neurofilament proteins and peripherin in the rat pituitary gland. Neurosci. Res. 22:267-275.
Badiu C, Badiu L, Coculescu M, Vilhardt H, Møller M ( 2001) Presence of oxytocinergic neuronal-like cells in the bovine pineal gland: an immunocytochemical and in situ hybridization study. J. Pineal Res. 31:273-280.
Badiu C, Coculescu M, Møller M (1999) Arginine vasotocin mRNA revealed by in situ hybridization in bovine pineal gland cells. Cell Tissue Res. 295:225-229.
Beaulieu JM, Kriz J, Julien JP (2002) Induction of peripherin expression in subsets of brain neurons after lesion injury or cerebral ischemia. Brain Res. 946:153-161.
Beaulieu JM, Nguyen MD, Julien JP (1999) Late onset death of motor neurons in mice overexpressing wild-type peripherin. J. Cell Biol. 147:531-544.
Bhaskar KS, Joy KP (1989) Acetylcholinesterase-positive intrapineal neuronal system in the palm squirrel Funambulus pennanti (Wroughton). Biol. Struct. Morphog. 2:7-11.
Boersma CJ, Sonnemans MA, Van Leeuwen FW (1993) Immunoelectron microscopic demonstration of oxytocin and vasopressin in pituicytes and in nerve terminals forming synaptoid contacts with pituicytes in the rat neural lobe. Brain Res. 611:117-129.
Boya J, Calvo JL (1993) Immunohistochemical study of the pineal astrocytes in the postnatal development of the cat and dog pineal gland. J. Pineal Res. 15:13-20.
Boya J, Calvo JL, Rancaňo D (1995) Structure of the pineal gland in the adult cat. J. Pineal Res. 18:112-118.
Cairns NJ, Grossman M, Arnold SE, Burn DJ, Jaros E, Perry RH, Duyckaerts C, Stankoff B, Pillon B, Skullerud K, Cruz-Sanchez FF, Bigio EH, Mackenzie IRA, Gearing M, Juncos JL, Glass JD, Yohoo H, Nakazato Y, Mosaheb S, Thorpe JR, Uryu K, Lee VM-Y, Trojanowski JQ (2004) Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63:1376-1384.
Calvo J, Boya J (1981) Embryonic development of the rat pineal gland. Anat. Rec. 200:491-500.
Chien CL, Liem RK (1995) The neuronal intermediate filament, α- internexin is transiently expressed in amacrine cells in the developing mouse retina. Exp. Eye Res. 61:749-756.
Chien CL, Mason CA, Liem RK (1996) α-internexin is the only neuronal intermediate filament expressed in developing cerebellar granule neurons. J. Neurobiol. 29:304-318.
Chien CL, Lee TH, Lu KS (1998) Distribution of neuronal intermediate filament proteins in the developing mouse olfactory system. J. Neurosci. Res. 54:353-363.
Ching GY, Chien CL, Flores R, Liem RK (1999) Overexpression of α-internexin causes abnormal neurofilamentous accumulations and motor coordination deficits in transgenic mice. J. Neurosci. 19:2974-2986.
Ching GY, Liem RK (1991) Structure of the gene for the neuronal intermediate filament protein α-internexin and functional analysis of its promoter. J. Biol. Chem. 266:19459-19468.
Chiu FC, Barnes EA, Das K, Haley J, Socolow P, Macaluso FP, Fang J (1989) Characterization of a novel 66kd subunit of mammalian neurofilaments. Neuron 2:1435-1445.
Collin JP, Mirshahi M, Brisson P, Falcon J, Guerlotte J, Faure JP (1986) Pineal-retinal molecular relationships: distribution of “S-antigen”in the pineal complex. Neuroscience 19:657-666
Coto-Montes A, Masson-Pėvet M, Pėvet P, Møller M (1994) The presence of opioidergic pinealocytes in the pineal gland of the European hamster (Cricetus cricetus, L.). An immunocytochemical study. Cell Tissue Res. 278:483-491.
Cui C, Stambrook PJ, Parysek LM (1995) Peripherin assembles into homopolymers in SW13 cells. J. Cell Sci.108:3279-3284.
David GF, Herbert J, (1973) Experimental evidence for a synaptic connection between habenula and pineal ganglion in the ferret. Brain Res. 64:327-343.
David GF, Kumar TC (1978) Histochemical localization of cholinesterases in the neural tissue of the pineal in the rhesus monkey. Experientia. 34:1067-1068.
Dellmann HD, Sikora K (1981) Pituicyte fine structure in the developing neural lobe of the rat. Dev. Neurosci. 4:89-97.
Falin LI (1961) The development of human hypophysis and differentiation of cells in its anterior lobe during embryonic life. Acta. Anat. 44:188-205.
Fliegner KH, Liem RK (1991) Cellular and molecular biology of neuronal intermediate filaments. Int. Rev. Cytol. 131:109-167.
Fliegner KH, Kaplan MP, Wood TL, Pintar JE, Liem RK (1994) Expression of the gene for the neuronal intermediate filament protein α–internexin coincides with the onset of neuronal differentiation in the developing rat nervous system. J. Comp. Neurol. 342:161-173.
Geisler N, Weber K (1981) Self-assembly in Vitro of the 68,000 molecular weight component of the mammalian neurofilament triplet proteins into intermediate-sized filament. J. Mol. Biol. 151:565-571.
Greene LA (1989) A new neuronal intermediate filament protein. Trends Neurosci. 12:228-230.
Giasson BI, Mushynski WE (1997) Developmentally regulated stabilization of neuronal intermediate filaments in rat cerebral cortex. Neurosci. Lett. 229:77-80.
Hashimoto H, Ishikawa H, Kusakabe M (1998) Three-dimensional analysis of the developing pituitary gland in the mouse. Dev. Dyn. 212:157-166
Hatton GI (1988) Pituicytes, glia and control of terminal secretion. J. Exp. Biol. 139:67-79
Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J. Cell Biol. 98:1523-1536.
Ho CL, Liem RK (1996) Intermediate filaments in the nervous system: implications in cancer. Cancer Metastasis Rev.15:483-497.
Hoffaman PN, Lasek RJ (1975) The slow component of axonal transport: Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66:351-366.
Hyyppä M (1972) Hypothalamic monoamines in human fetuses. Neuroendocrinology 9:257-266.
Ito T, Matsushima S (1968) Some morphological observations on the pineal body of mice. Saishin Igaku. 23:845-847. Japanese
Ito T, Matsushima S (1967) A quantitative morphological study of the postnatal development the pineal body of the mouse. Anat. Rec.159:447-452.
Jackman A, Fitzgerald M (2000) Development of peripheral hindlimb and central spinal cord innervation by subpopulations of dorsal root ganglion cells in the embryonic rat. J. Comp. Neurol. 418:281-298.
Jiang-Shieh YF, Wu CH, Chang ML, Shieh JY, Wen CY (2003) Regional heterogeneity in immunoreactive macrophages/microglia in the rat pineal gland. J. Pineal Res. 35:45-53
Julien JP (1999) Neurofilament functions in health and disease. Curr. Opin. Neurobiol. 9:554-560.
Kaplan MP, Chin SS, Fliegner KH, Liem RK (1990) α-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weigh neurofilament protein (NF-L) in the developing rat brain. J. Neurosci. 10:2735-2748.
Kappers JA (1979) Short history of pineal discovery and research. In the pineal gland of vertebrates including man. In JA Kapper and P Pévet(eds) Prog. Brain Res. Vol. 52, Elsevier/ North-Holland, Amsterdam. pp. 3-22.
Kaur C, Srinivasan KN, Singh J, Peng CM, Ling EA (2002) Plasma melatonin, pinealocytes morphology, and surface receptors/antigen expression on macrophage/microglia in the pineal gland following a high-altitude exposure. J. Neurosci. Res. 67:533-543
Klein DC (1985) Photoneural regulation of the mammalian pineal gland. Ciba Found. Symp.117:38-56.
Kofler B, Bulleyment A, Humphries A, Carter DA (2002) Id-1 expression defines a subset of vimentin/S-100beta-positive, GFAP-negative astrocytes in the adult rat pineal gland. Histochem. J. 34:167-171.
Korf HW, Foster RG, Ekström P, Schalken JJ (1985a) Opsin-like immunoreaction in the retinae and pineal organs of four mammalian species. Cell Tissue Res. 242:645-648.
Korf HW, Møller M, Gery I, Zigler JS, Klenin DC (1985b) Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell Tissue Res. 239:81-85.
Korf HW, Sato T, Oksche A (1990) Complex relationships between the pineal organ and the medial habenular nucleus-pretectal region of the mouse as revealed by S-antigen immunocytochemistry. Cell Tissue Res. 261:493-500.
Lariviere RC, Julien JP (2004) Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58:131-148.
Lariviere RC, Nguyen MD, Ribeiro-da-Silva A, Julien JP (2002) Reduced number of unmyelinated sensory axons in peripherin null mice. J. Neurochem. 81:525-532.
Lee VM, Page C (1984) The dynamics of nerve factor-induced neurofilament and vimentin filament expression and organization in PC12 cells. J. Neurosci. 4:1705-1714.
Lee V, Trojanowski JQ, Scalaepfer WW (1982) Induction of neurofilament triplet proteins in PC12 cells by nerve growth factor. Brain Res. 238:169-180.
Leonard DG, Gorham JD, Cole P, Greene LA, Ziff EB (1988) A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. J. Cell Biol. 106:181-193.
Liem RK (1993) Molecular biology of neuronal intermediate filament. Curr. Opin. Cell Biol. 5:12-16.
Liem RK, Hutchison SB (1982) Purification of individual components of the neurofilament triplet filament assembly from the 70,000 dalton subunit. Biochemistry 21:3221-3226.
Liem RK, Yen SH, Salomon GD, Shelanski ML (1978) Intermediate filaments in nervous tissue. J. Cell Biol. 79:637-645.
Li K, Welsh MG (1991) S-antigen and glial fibrillary acidic protein immunoreactivity in the in situ pineal gland of hamster and gerbil and in pineal grafts: developmental expression of pinealocyte and glial markers. Am. J. Anat. 192:510-522.
Lopez-Munoz F, Boya J, Calvo JL, Marin F (1992) Immunohistochemical localization of glial fibrillary acidic protein (GFAP) in rat pineal stalk astrocytes. Histol. Histopathol. 7: 643-646.
Lopez-Munoz F, Boya J (1995) Effects of the chemical denervation on the glial cells of the rat pineal gland: an immunocytochemical study during postnatal development. J. Pineal Res. 18:197-206.
Ma D, Descarries L, Micheva KD, Lepage Y, Julien JP, Doucet G (1999) Severe neuronal losses with age in the parietal cortex and ventrobasal thalamus of mice transgenic for the human NF-L neurofilament protein. J. Comp. Neurol. 406:433-448.
Matsushima S, Sakai Y, Hira Y, Oomuri Y, Daikoku S (1994) Immunohistochemical studies on sympathetic and on sympathetic nerve fibers and neuronal cell bodies in the pineal gland of cotton rat, Sigmodon hispidus. Arch. Histol. Cytol. 57:47-58.
Miyata S, Matsushima O, Hatton GI (1997) Taurine in rat posterior pituitary: localization in astrocytes and selective release by hypoosmotic stimulation. J. Comp. Neurol. 381:513-523.
Møller M (1979) Presence of a pineal nerve (nervus pinealis) in fetal mammals. Prog. Brain Res. 52:103-106.
Møller M (1997) Peptidergic cells in the mammalian pineal gland. Morphological indications for a paracrine regulation of the pinealocytes. Biol. Cell 89:561-567.
Møller M, Baeres FM (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 309:139-150.
Møller M, Ingild A, Bock E (1978) Immunohistochemical demonstration of S-100 protein and GFA protein in interstitial cells of rat pineal gland. Brain Res. 140:1-13.
Ohshima K, Matsuo S (1988) Cytodifferentiation of the chick pineal gland, with special reference to the photosensory and secretory elements. J. Pineal Res. 5:397-410.
Olcese J (1995) The mammalian pineal gland and reproduction, controversies and strategies for future research. Adv. Exp. Med. Biol. 377:1-14.
Pachter JS, Liem RK (1985) α-Internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. J. Cell Biol. 101:1316-1322.
Perlmutter LS, Hatton GI, Tweedle CD (1984) Plasticity in the in vitro neurohypophysis: effects of osmotic changes on pituicytes. Neuroscience 12:503-511.
Phansuwan-Pujito P, Mikkelsen JD, Govitrapong P, Møller M (1991) A cholinergic innervation of the bovine pineal gland visualized by immunohistochemical detection of choline acetyltransferase-immunoreactive nerve fibers. Brain Res. 545:49-58.
Portier MM, Brachet P, Croizat B, Gros F (1983) Regulation of peripherin in mouse neuroblastoma and rat PC12 pheochromocytoma cell lines. Dev. Neurosic. 6:215-226.
Portier MM, de Nechaud B, Gros F (1983) Peripherin, a new member of the intermediate filament protein family. Dev. Neurosci. 6:335-344.
Redecker P (1998) Developmental pattern of cell type-specific calretinin immunoreactivity in the postnatal gerbil pineal gland. Brain Res. Dev. Brain Res. 105:43-50.
Redondo E, Franco AJ, Regodon S (1996) Prenatal development of the sheep pineal gland: an ultrastructural study. J. Pineal Res. 21:140-148.
Redondo E, Franco A, Masot AJ, Regodon S (2001) Ultrastructural and immunocytochemical characterization of interstitial cells in pre- and postnatal developing sheep pineal gland. Eur. J. Histochem. 45:249-258.
Richard R (1983) The Pineal gland. Elsevier Biomedical, New York. Amsterdam. Oxford. p78.
Robertson J, Beaulieu JM, Doroudchi MM, Durham HD, Julien JP, Mushynski WE (2001) Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-α. J. Cell Biol. 155:217-226.
Romijn HJ (1973) Structure and innervation of the pineal gland of the rabbit, Oryctolagus cuniculus (L.). II. An electron microscopic investigation of the pinealocytes. Z. Zellforsch Mikrosk Anat. 141:545-560.
Saito J, Ozaki Y, Ohnishi H, Nakamura T, Ueta Y (2003) Induction of galanin-like peptide gene expression in the rat posterior pituitary gland during endotoxin shock and adjuvant arthritis. Brain Res. Mol. Brain Res. 113:124-132.
Schenda J, Vollrath L (1999) An intrinsic neuronal-like network in the rat pineal gland. Brain Res. 823:231-233.
Schröder H, Bendig A, Dahl D, Gröschel-Stewart U, Vollrath L (1990) Neuronal markers in the rodent pineal gland – an immunohistochemical investigation. Histochemistry 94:309-314.
Shea TB, Beermann ML (1999) Neuronal intermediate filament protein α-internexin facilitates axonal neurite elongation in neuroblastoma cells. Cell Motil. Cytoskeleton 43:322-333.
Shen J, Larm JA, Gundlach AL (2001) Galanin-like peptide mRNA in neural lobe of rat pituitary increased expression after osmotic stimulation suggests a role for galanin-like peptide in neuron-glial interactions and/or neurosecretion. Neuroendocrinology 73:2-11.
Sheridan MN, Rollag MD (1983) Development and melatonin content of the deep pineal gland in the Syrian hamster. Am. J. Anat. 168:145-156.
Sotelo-Silveira JR, Calliari A, Kun A, Benech JC, Sanguinetti C, Chalar C, Sotelo JR (2000) Neurofilament mRNAs are present and translated in the normal and severed sciatic nerve. J. Neurosci. Res. 62:65-74.
Steinert PM, Liem RK (1990) Intermediate filament dynamics. Cell 60:521-523.
Stone JD, Peterson AP, Eyer J, Oblak TG, Sickles DW (2001) Neurofilaments are nonessential to the pathogenesis of toxicant-induced axonal degeneration. J. Neurosci. 21:2278-2287.
Szabó K, Csányi K (1982) The vascular architecture of the developing pituitary-median eminence complex in the rat. Cell Tissue Res. 224:563-577.
Takahashi H, Oyanagi K, Ikuta F, Tanaka M, Yuasa T, Miyatake T (1993) Widespread multiple system degeneration in a patient with familial amyotrophic lateral sclerosis. J. Neurol. Sci. 120:15-21.
Troy CM, Brown K, Greene LA, Shelanski ML (1990) Ontogeny of the neuronal intermediate filament protein, peripherin, in the mouse embryo. Neuroscience 36:217-237.
Undamatla J, Szaro BG (2001) Differential expression and localization of neuronal intermediate filament proteins within newly developing neuritis in dissociated cultures of Xenopus laevis embryonic spinal cord. Cell Motil. Cytoskeleton 49:16-32.
Vigh-Teichmann I, Vigh B (1992) Immunocytochemistry and calcium cytochemistry of the mammalian pineal organ: a comparison with retina and submammalian pineal organs. Microsc. Res. Tech. 21:227-241.
Vollrath L (1981) The pineal organ. Springer-Verlag Berlin, Heidelberg, New York pp.1-665.
Watanabe K, Araki M, Iwasaki H (1992) The embryonic pineal body as a multipotent organ. Microsc. Res. Tech. 21:218-226.
Walker KL, Yoo HK, Undamatla J, Szaro BG (2001) Loss of neurofilaments alters axonal growth dynamics. J. Neurosci. 21:9655-9666.
Welsh MG, Li K (1992) Third ventricular pineal gland grafts in the gerbil: an electron microscopical and immunohistochemical investigation. Microsc. Res. Tech. 21:205-217.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top