|
[1] R. R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang. Automatic recognition of usgs land use/cover categories using statistical and neural networks classifiers. In SPIE OE/Aerospace and Remote Sensing, Bellingham, WA, 1993. SPIE. [2] C. L. Blake and C. J. Merz. UCI repository of machine learning databases. Technical report, University of California, Department of Information and Computer Science, Irvine, CA, 1998. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html. [3] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages 144-152. ACM Press, 1992. [4] L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. [5] C.-C. Chang and C.-J. Lin. IJCNN 2001 challenge: Generalization ability and text decoding. In Proceedings of IJCNN. IEEE, 2001. [6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. [7] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46:131-159, 2002. [8] Y.-W. Chen and C.-J. Lin. Combining svms with various feature selection strategies. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature extraction, foundations and Applications. Springer, 2004. [9] W. Chu, S. Keerthi, and C. Ong. Bayesian trigonometric support vector classifier. Neural Computation, 15(9):2227-2254, 2003. [10] K.-M. Chung, W.-C. Kao, C.-L. Sun, L.-L. Wang, and C.-J. Lin. Radius margin bounds for support vector machines with the RBF kernel. Neural Computation, 15:2643-2681, 2003. [11] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture of SVMs for very large scale problems. Neural Computation, 14(05):1105-1114, 2002. [12] C. Cortes and V. Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995. [13] R. A. Fisher. The use of multiple measurements in taxonomic problem. Annals of Eugenics, 7:179-188, 1936. [14] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182, 2003. [15] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. [16] M. Heiler, D. Cremers, and C. Schnorr. Efficient feature subset selection for support vector machines. Technical Report 21, University of Mannheim, Germany, Department of Mathematics and Computer Science, Computer Vision, Graphics, and Pattern Recognition Group, D-68131 Mannheim, Germany, 2001. [17] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification. Technical report, 2003. [18] T. Joachims. Transductive inference for text classification using support vector machines. In Proceedings of International Conference on Machine Learning, 1999. [19] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In International Conference on Machine Learning, pages 121-129, 1994. Journal version in AIJ, available at http://citeseer.nj.nec.com/13663.html. [20] S. S. Keerthi and C.-J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7):1667-1689, 2003. [21] R. Kohovi and G. H. John. Wrappers for feature subset selection. Artificial Intellgence, 97(1-2):273-324, 1997. [22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998. MNIST database available at http://yann.lecun.com/exdb/mnist/. [23] A. Liaw and M. Wiener. Classification and regression by randomForest. R News, 2/3:18-22, December 2002. [24] C.-J. Lin. A Guide to Support Vector Machines. [25] C.-J. Lin. Formulations of support vector machines: a note from an optimization point of view. Neural Computation, 13(2):307-317, 2001. 69 [26] H.-T. Lin and C.-J. Lin. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Technical report, Department of Computer Science and Information Engineering, National Taiwan University, 2003. [27] A. K. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving text classification by shrinkage in a hierarchy of classes. In J. W. Shavlik, editor, Proceedings of ICML-98, 15th International Conference on Machine Learning, pages 359-367, Madison, US, 1998. Morgan Kaufmann Publishers, San Francisco, US. [28] G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York, 1992. [29] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical Classification. Prentice Hall, Englewood Cliffs, N.J., 1994. Data available at http://www.ncc.up.pt/liacc/ML/statlog/datasets.html. [30] S. Perkins, K. Lacker, and J. Theiler. Grafting: Fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research, 3:1333-1356, 2003. [31] J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, 2000. MIT Press. [32] D. Prokhorov. IJCNN 2001 neural network competition. Slide presentation in IJCNN''01, Ford Research Laboratory, 2001. http://www.geocities.com/ijcnn/nnc_ijcnn01.pdf . [33] G. Ratsch. Benchmark data sets, 1999. Available at http://ida.first.gmd.de/~raetsch/data/benchmarks.htm. [34] V. Svetnik, A. Liaw, C. Tong, and T. Wang. Application of Breiman''s random forest to modeling structure-activity relationships of pharmaceutical molecules. In F. Roli, J. Kittler, and T. Windeatt, editors, Proceedings of the 5th International Workshopon Multiple Classifier Systems, Lecture Notes in Computer Science vol. 3077., pages 334-343. Springer, 2004. [35] V. Svetnik, A. Liaw, C. Tong, and T. Wang. Application of breiman''s random forest to modeling structure-activity relationships of pharmaceutical molecules. In Multiple Classifier Systems, pages 334-343, 2004. [36] V. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998. [37] V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12(9):2013-2036, 2000. [38] J.-Y. Wang. Application of support vector machines in bioinformatics. Master''s thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2002. [39] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. In Advances in Neural Information Processing Systems, volume 12, pages 668-674, 2000. [40] T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5:975-1005, 2004. [41] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Technical report, 2003.
|