|
[1] CMU Informedia Digital Video Library project “http://www.informedia.cs.cmu.edu/”. [2] Multimedia Document Retrieval project at Cambridge University Home Page: “http://mi.eng.cam.ac.uk/research/Projects/Multimedia Document Retrieval/”. [3] D.R.H. Miller, T. Leek and R. Schwartz, "Speech and languagetechnologies for audio indexing and retrieval," Proc.IEEE, vol. 88, no. 8, pp. 1338-1353, 2000. [4] S. Whittaker, J. Hirschberg, J. Choi, D. Hindle, F. Pereiraand A. Singhal, "SCAN: Designing and evaluating user interfaceto support retrieval from speech archives," in Proc.ACM SIGIR Conference on R&D in Information Retrieval,1999, pp. 26-33. [5] A. Merlino and M. Maybury, "An empirical Study of the optimal presentation of multimedia summaries of broadcast News," in Automated Text Summarization, I. Mani and M.Maybury, Eds. Cambridge, MA: MIT Press 1999, pp. 391-401. [6] SpeechBot Audio/Video Search at Hewlett-Packard (HP) Labs: “http://www.speechbot.com/”. [7] T. Kohonen, “Self-Organization and Associative Memory,” Springer, 1984. [8] T. Kohonen, “Self-Organizing Maps,” Springer, 1995. [9] T. Kohonen, S. Kaski, K. Lagus, J. Salojvi, J. Honkela, V.Paatero and Saarela A,”Self organization of a massive document collection,” IEEE Trans on Neural Networks, vol. 11, no. 3, pp. 574-585, 2000. [10] M. Kurimo, “Thematic indexing of spoken documents by using self-organizing maps,” Speech Communication, vol. 38, pp. 29-45, 2002. [11] T. Hofmann, “ProbMap - a probabilistic approach for mapping large document collections,” Journal for Intelligent Data Analysis, vol. 4, pp. 149-164, 2000. [12] Thomas Hofmann, “Probabilistic Latent Semantic Analysis,” Uncertainty in Artificial Intelligence, 1999. [13] S. Deerwester, S. T. Dumais, G. W.Furnas, T. K. Landauer and R. Harshman, “Indexing by Latent Semantic Analysis,”Proceeding of the American Society for Information Science, 1990. [14] A. P. Dempster, N. M. Laird, and D. B. Robin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of Royal Statist, 1977. [15] Berlin Chen, Exploring the Use of Latent Topical Information for Statistical Chinese Spoken Document Retrieval ,‘Minor revisions, Pattern Recognition Letters, January 2005. [16] S. C. Chen and L. S. Lee, “Automatic title generation for Chinese spoken documents using an adaptive K-nearest-neighbor approach,” in Proc. European Conference on Speech Communication and Technology, 2003, pp. 2813-2816. [17] L. S. Lee and S. C. Chen, “Automatic title generation for Chinese spoken documents considering the special structure of the language,” in Proc. European Conference on Speech Communication and Technology, 2003, pp. 2325-2328. [18] Lin-shan Lee, Yuan Ho, Jia-fu Chen and Shun-Chuan Chen, “Why is the special structure of the language important for Chinese spoken language processing? -examples on spoken document retrieval, segmentation and summarization,” in Proc. European Conference on Speech Communication and Technology, 2003, pp. 49-52.
|