跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/09 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張家豪
研究生(外文):Chia-Hao Chang
論文名稱:適應性搜尋步數與變焦追蹤演算法應用於自動聚焦
論文名稱(外文):Auto Focus Using Adaptive Step Size Search and Zoom Tracking Algorithm
指導教授:傅楸善傅楸善引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:65
中文關鍵詞:自動聚焦變焦追蹤適應性搜尋
外文關鍵詞:Auto focusadaptive searchzoom tracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:534
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
我們在這篇論文中提出了適應性搜尋步數自動對焦演算法以及變焦追蹤演算法。
目前存在著許多自動對焦搜尋演算法,像是全域搜尋,二元搜尋,費柏納西搜尋以及其他相關的搜尋演算法。全域搜尋可以保證找到最大的峰值(peak),但是其缺點為搜尋時間過長。二元搜尋以及費柏納西搜尋的搜尋時間減短了,但是鏡頭必須來回移動,容易造成定位上的失誤。我們的適應性搜尋步數演算法只有一次反向移動,而且搜尋的時間可以減少很多。
變焦追蹤是在變焦的時候持續的改變焦距來保持聚焦。常見的變焦追蹤演算法都是使用查表法加上內插法。但是表的大小常常有其限制。我們的變焦追蹤演算法可以有效的減少表的大小並且仍能保持聚焦。
In this thesis, an adaptive step size auto focus search algorithm and a reduced zoom tracking algorithm are proposed.
Many different auto focus search algorithms exist, such as global search, binary search, Fibonacci search, and so on. Global search can ensure the global peak is found correctly, but the search time is too long. The search time of binary or Fibonacci search is shortened, but the lens has to move back and forth frequently, which is prone to have step errors. Our adaptive step size search algorithm performs only one backward movement while the search time is greatly decreased.
Zoom tracking is to adjust a camera’s focal length continuously, to keep the in-focus state of an image during zoom operation. A simple table-lookup with interpolation method is commonly used, but the size of the table is important. Our reduced zoom tracking algorithm reduces the table size while still achieving good image quality.
Chapter 1 Introduction 1
1.1 Thin Lens Equation 2
1.2 Focal Length 2
1.2.1 Field of View 3
1.3 Depth of Field 3
1.4 Aperture Diameter 4
1.5.1 F-Stops (F-numbers) 4
1.5 Shutter Speed 5
Chapter 2 Auto Focus 6
2.1 Auto Focus Methods 6
2.1.1 Active Auto Focus 6
2.1.2 Passive Auto Focus 8
2.1.3 Type of Passive Auto Focus 9
2.2 Focus Value Measurements 10
2.2.1 Gradient Magnitudes 11
2.2.1.1 Roberts Edge Detector 12
2.2.1.2 Sobel Edge Detector 12
2.2.1.3 Other Edge Detectors 13
2.2.2 Laplacian Filter 13
2.2.3 Infinite Impulse Response (IIR) Filter 14
2.3 Lens Position Search Algorithms 15
2.3.1 Global Search 15
2.3.2 Hill-Climbing Search 16
2.3.3 Binary Search 17
2.3.4 Fibonacci Search 18
2.3.5 Rule-Based Search 18
2.4 Adaptive Step Size Search 19
2.4.1 Step States 20
2.4.2 Decision Criteria 20
Chapter 3 Zoom Tracking 25
3.1 Related Work 26
3.1.1 Adaptive Zoom Tracking 26
3.1.2 Enhanced Zoom Tracking 27
3.2 Reduced Zoom Tracking 29
3.2.1 Linear Region 29
3.2.2 Nonlinear Region 31
3.2.3 Summary 31
Chapter 4 Equipment Setup and Experiments Results 32
4.1 Equipments Setup 32
4.1.1 Hardware Overview 32
4.1.2 Software Overview 35
4.2 Proposed Adaptive Step Size Auto Focus Search Algorithm 36
4.2.1 Focus Value Measurement 36
4.2.2 Adaptive Step Size Search Algorithm 37
4.2.2.1 Experiment 1 38
4.2.2.2 Experiment 2 39
4.2.2.3 Experiment 3 40
4.2.2.4 Experiment 4 41
4.2.2.5 Summary 42
4.3 Reduced Zoom Tracking 42
4.3.1 Wide-Angle to Tele-Photo 44
4.3.2 Tele-Photo to Wide-Angle 47
4.3.3 Summary 51
Chapter 5 Conclusion and Future Work 53
5.1 Adaptive Step Size Search 53
5.1.1 Conclusion 53
5.1.2 Future Work 53
5.2 Reduced Zoom tracking 54
5.2.1 Conclusion 54
5.2.2 Future Work 54
References 55
[1]B. E. Bayer, “Color Imaging Array,” US Patent No. 3971065.
[2]G. S. Beveridge and R. S. Schechter, Optimization: Theory and Practice, pp. 180-193, McGraw-Hill, New York, 1970.
[3]V. Bockaert, “Focal Length", http://www.dpreview.com/learn/?/Glossary/Optical/Focal_Length_01.htm, 2003.
[4]Bores Signal Processing, “Introduction to DSP,” http://www.bores.com/courses/intro/iir/5_eq.htm, 2004.
[5]Canon, “Calculate Depth of Field,” http://www.canon.com/bctv/calculator/calculator2.html, 2005.
[6]R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2ndEd., pp. 128-132, Prentice Hall, New Jersey, 2002.
[7]R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. I, pp. 337-352, Addison-Wesley, Reading, MA, 1992.
[8]P. Hoad and J. Illingworth, “Automatic Control of Camera Pan, Zoom and Focus for Improving Object Recognition,” Proceedings of IEE International Conference on Image Processing and Its Applications, Edinburgh, no. 410, pp. 291-295, 1995.
[9]Iowegian International, “Infinite Impulse Response Filter FAQ,” http://www.dspguru.com/info/faqs/iirfaq.htm, 2004.
[10]N. Kehtarnavaz and H. J. Oh, “Development and Real-Time Implementation of a Rule-Based Auto-Focus Algorithm,” Journal of Real-Time Imaging, Vol. 9, Issue 3, pp. 197-203, 2003.
[11]Y. Kim, J. S. Lee, A. Morales and S. J. Ko, "A Video Camera System with Enhanced Zoom Tracking and Auto White Balance," IEEE Transactions on Consumer Electronics, Vol. 48, No. 3, pp. 428 -434, 2002.
[12]J. S. Lee., S. J. Ko, Y. Kim, and A. Morales, “A Video Camera System with Adaptive Zoom Tracking,” Proceedings of International Conference on Consumer Electronics, Los Angeles, California, pp. 56-57, 2002.
[13]A. Macbeth, “Camera Basics,” http://www.andrewmacbeth.com/articles/camera_basics.htm, 2005.
[14]Ricoh, 4T16-3X-3.3M Lens Module Sample Specification Sheet, 2002.
[15]A. R. Sampson, “Scanning Electron Microscopy,” http://www.sem.com/analytic/sem.htm, 1996.
[16]Texas Instruments, “TMS320DM320 Image Peripherals Vol-1b,” Technical Reference Manual, Ver. 1.4, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top