(100.26.179.251) 您好!臺灣時間:2021/04/21 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王盛禾
研究生(外文):Sheng-Ho Wang
論文名稱:整合前處理機制與具感知能力去方塊效應濾波器之H.264/AVC壓縮效能提升方法
論文名稱(外文):H.264/AVC coding performance enhancement via incorporating pre-process with perceptual-based in-loop deblocking filters
指導教授:黃肇雄黃肇雄引用關係吳家麟
指導教授(外文):Jau-hsiung HuangJa-Ling Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:83
中文關鍵詞:資料壓縮去方塊效應濾波器後處理機制前處理機制
外文關鍵詞:H.264Deblocking filterPost-processingPre-processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,數位多媒體內容 (digital multimedia content)的相關技術及創作內容已快速蓬勃地發展,各種不同形式的影音特效是造就多媒體內容如此受大眾歡迎的主因,正由於多媒體資料是如此的豐富且複雜,相關的多媒體資料壓縮技術也已經成為重要的研究方向,其中,區塊壓縮 (block-based) 搭配移動補償 (motion compensation) 的方法已被許多國際壓縮標準所採納且行之多年,例如: JPEG、MPEG1/2/4、H.264/AVC。雖然區塊壓縮可達到不錯的壓縮效率,但它同時也造成了視訊影像的失真,其中最明顯的就是方塊效應 (blocking effect),為了減低此效應的影響,各個壓縮標準也分別制定其去方塊效應濾波器 (deblocking filer),以求失真程度降到最低。

目前最新的視訊壓縮標準 (H.264/AVC) 提供編碼器兩個動態調整去方塊效應濾波器的參數,在H.264/AVC 的標準制定中並沒有規範如何動態調整此組參數,因此,本篇論文利用後處理 (post-processing) 的方法來改進 H.264/AVC去方塊效應濾波器的能力,根據人類視覺系統 (HVS) 模型,分析視訊影像的內容,進而動態調整去方塊效應濾波器的強度,對於解碼後視訊畫質的提升有很大的幫助。

除了後處理機制之外,本篇論文還利用前處理 (pre-processing) 機制搭配後處理的方法來改善H.264/AVC 的整體壓縮效能,也就是能夠用較少的資料來表示原本的多媒體資料且仍能呈現出不錯的畫面品質,前處理的想法是先將原始多媒體資料經由適當的低通濾波器 (low pass filter) 處理之後,然後將此低頻訊號傳給 H.264/AVC 編碼器來進行壓縮,如此,整體的視訊壓縮效能將會比直接壓縮原始訊號來得好。
Block-based video coding cooperating with block transform and block motion compensation is the most widely adopted way to reduce the data redundancy in various video coding standards. Although the goal of de-correlations is achieved effectively by this way, the most annoying artifact known as the blocking effect also comes into existence. To both remove this artifact and improve the coding performance simultaneously, the latest video coding standard, H.264/AVC, enforces the deblocking filters inside its coding loop.
In the design of deblocking filters of H.264/AVC, one pair of parameters, OffsetA and OffsetB, are provided, which allow the adaptive control of the deblocking strength in slice level. Thus, finding out better parameters for conducting the deblocking process of H.264/AVC is capable of improving visual quality of reconstructed video. Identifying which edges belong to blocking effect relies on perceptual judgment of human beings. In fact, this subjective assessment may not exactly match existing objective measurements and high PSNR does not always stand for less blocking artifacts. In this thesis, we introduce two new criteria for measuring the blocking distortion by analyzing the perceptual difference between the source and the reconstruction. The experimental results validate the proposed approaches, especially in subjective issues. On the other hand, another implicit advantage of deblocking is ignored by most encoders. It is observed that different coded images may have the same output after applying the mandatory deblocking process. Based on this observation, we integrate this concept into H.264/AVC. For eight different deblocking modes, we first derive the equations to change the input image but do not affect the final output reconstruction. By choosing those of less bitrate consumption, the proposed pre-processing approach successfully improves video coding performance.
Combing advantages of both pre-process and post-process, an enhanced H.264/AVC coding system is implemented which maximizes the effect of deblocking filters. The experimental results demonstrate its improvements for H.264/AVC codec both in objective and subjective evaluations
TABLE OF CONTENTS
Page
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 DEBLOCKING METHODS 2
1.3 H.264/AVC IN-LOOP DEBLOCKING FILTER 3
1.4 CONTRIBUTIONS 4
1.5 THESIS ORGANIZATION 5
CHAPTER 2 RELATED WORKS 7
2.1 BLOCKING EFFECT 7
2.2 RELATED DEBLOCKING METHODS 9
2.3 BLOCKING EFFECT MEASUREMENTS 14
CHAPTER 3 SYSTEM FRAMEWORK 21
3.1 ADAPTIVE DEBLOCKING OF H.264/AVC 21
3.1.1 The Slice Level 21
3.1.2 The Block-edge Level 22
3.1.3 The Sample Level 23
3.2 PROPOSED SYSTEM FRAMEWORK 26
CHAPTER 4 THE POST-PROCESSING 29
4.1 BOUNDARY-ENERGY SENSITIVE DEBLOCKING ALGORITHM 29
4.2 BLOCKING EFFECT AND BLUR DEGREE ANALYSIS 30
4.2.1 Block Discontinuity Energy 30
4.2.2 Perceptual-based Measurement for Blocking and Blurring Artifacts 32
4.3 EFFECTIVE SEARCH ALGORITHMS 36
4.3.1 Predicted Diamond Search (PDS) 37
4.3.2 Predicted Local Square Search (PLSS) 38
CHAPTER 5 THE PRE-PROCESSING 41
5.1 THE ADVANTAGES OF DEBLOCKING FILTER 41
5.2 MAXIMIZING THE EFFECT OF DEBLOCKING FILTER 42
5.3 PRE-PROCESSING FLOWCHART 44
5.4 RATE-DISTORTION OPTIMIZATION 46
5.5 OPERATION ORDERS 49
CHAPTER 6 EXPERIMENTAL RESULTS 51
6.1 POST-PROCESSING EXPERIMENTS 51
6.2 PRE-PROCESSING EXPERIMENTS 57
CHAPTER 7 CONCLUSIONS AND FUTURE WORK 63
7.1 CONCLUSIONS 63
7.2 FUTURE WORK 64
BIBLIOGRAPHY 65
APPENDIX A 69
APPENDIX B 71
[1] “Information Technology – Coding of Audio-Visual Objects, Part 2: Visual,” ISO/IEC 14496-2:2001, Second Edition, International Organization for Standardization, 2001.
[2] “Text of ISO/IEC FDIS 14496-10/Draft ITU-T H.264: Information Technology – Coding of Audio-Visual Objects: Advanced Video Coding,” International Organization for Standardization, 2003.
[3] W. F. Cheung and Y. H. Chan, “Improving MPEG-4 coding performance by jointly optimizing compression and blocking effect elimination,” IEE Proceedings-Vision, Image and Signal Processing, vol. 148, pp.194-201, Jun. 2001.
[4] W. C. Fong, S.C. Chan, A. Nallanathan, K.L. Ho, "Integer lapped transforms and their applications to image coding," IEEE Trans. on Image Processing, vol. 11, pp.1152-1159, Oct. 2002.
[5] B. Tao and M.T. Orchard, "A parametric solution for optimal overlapped block motion compensation," IEEE Trans. on Image Processing, vol.10, pp.341 -350, Mar. 2001.
[6] S. Nogaki and M. Ohta, “An overlapped block motion compensation for high quality motion picture coding,” Proc. Int. Sump. Circuits Systems, 1992.
[7] D. C. Youla and H. Webb, “Image restoration by the method of convex projections: Part I--- Theory,” IEEE Trans. Med. Imag. vol 1, pp. 81-94, Oct. 1982.
[8] ZAKHOR, “Iterative procedures for reduction of blocking effects in transform image coding,” IEEE Trans. on Circuits Syst. Video Technology, vol. 2, pp.91-95, Mar. 1992.
[9] Weerasinghe, A. W. C. Liew, H. Yan, “Artifacts reduction in compressed images based on region homogeneity constraints using the projection onto convex sets algorithm,” IEEE Trans. on Circuits Syst. Video Technology, vol. 12, pp.891-897, Oct. 2002.
[10] T. P. O’Rourke and R. L. Stevenson, “Improved image decompression for reduced transform coding artifacts,” IEEE Trans. on Circuits Syst. Video Technology, vol. 5, pp.490-498, Dec. 1995.
[11] S. D. Kim, J. Yi, H. M. Kim, J. B. Ra, “A deblocking filter with two separate modes in block-based video coding,” IEEE Trans. on Circuits Syst. Video Technology, vol. 9, pp.156-160, Feb. 1999.
[12] P. List, A. Joch, J. Lainema, G. Bjntegaard , M. Karczewicz, “Adaptive deblocking filter,” IEEE Trans. on Circuits Syst. Video Technology, vol. 13, pp.614-619, Jul. 2003.
[13] M. Zhao, R. E. J. Kneepkens, P. M. Hofman, G. de Haan, “Content adaptive image de-blocking,” Proc. of ISCE, Sept. 2004.
[14] Y. C. Zhu and M. J. Chen, “Improvement of adaptive deblocking filter in H.264,” Workshop on Consumer Electronics and Signal Processing, 2004.
[15] Y.H. CHAN, S.W.HONG, and W.C SIU., “A practical post-processing technique for real-time block-based coding system,” IEEE Trans. on Circuits Syst. Video Technology, vol.8, pp.4-8, Feb. 1998.
[16] Z. XIONG, M.T. ORCHARD, and Y.Q. ZHANG, “A deblocking algorithm for jpeg compressed images using overcomplete wavelet representations,” IEEE Trans. on Circuits Syst. Video Technology, vol. 7, pp.433-437, Apr. 1997.
[17] K. U. Barthel and H. L. Cycon, “Image denoising using fractal and wavelet-based methods,” SPIE''s International Symposium on Photonics Technologies for Robotics, Automation, and Manufacturing Wavelet Applications in Industrial Processing, Oct. 2003.
[18] A . W. C. Liew and H. Yan, “Blocking artifacts suppression in block-coded images using overcomplete wavelet representation,” IEEE Trans. on Circuits Syst. Video Technology, vol. 14, pp.450-460, Apr. 2004.
[19] A. Z. Averbuch, A. Schclar and D. L. Donoho, “Deblocking of block-transform compressed images using weighted sums of symmetrically aligned pixels,” IEEE Trans. on Circuits Syst. Video Technology, vol.14, pp.200-212, Feb. 2005.
[20] S. A. Karunasekera and N. G. Kingsbury, “A distortion measure for blocking artifacts in images based on human visual sensitivity,” IEEE Trans on Image Processing, pp. 713-724, June 1995.
[21] Z. YU, H.R. Wu, S. Winkler, T. Chen, “Vision-model-based impairment metric to evaluate blocking artifacts in digital video,” Proc. IEEE, pp. 154-169, Jan. 2002.
[22] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment based on structural distortion measurement”, Signal Processing: Image Communication, pp. 121-132, 2004.
[23] H. R. Wu, M. Yuen, “A generalized block-edge impairment metric for video coding,” IEEE Signal Process. Lett., vol. 4, pp. 317–320, Nov. 1997.
[24] Z. Wang, H. R. Sheikh, and A. C. Bovik, “No-Reference perceptual quality assessment of JPEG compressed images”, IEEE International Conference on Image Processing, pp. I-477–480, Sept. 2002.
[25] F. Pan, X. Lion, S. Rahardja, W. Lin, E. Ong, S. Yao, Z. Lu, X. Yang, “A locally adaptive algorithm for measuring blocking artifacts in images and videos”, Signal Processing: Image Communication, pp. 499-506, 2004.
[26] P. Marziliano, F. Dufaux, S. Winkler, T. Ebrahimi, “Perceptual blur and ringing metrics: application to JPEG2000”, Signal Processing: Image Communication, pp. 163-172, 2004.
[27] C. H. Chou and Y. C. Li, “A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile,” IEEE Trans. on Circuits Syst. Video Technology, vol. 5, pp.467-476, Dec. 1995.
[28] B. Girod, “The information theoretical significance of spatial and temporal masking in video signals”, in Proc. SPIE Conf. Human Vision, Visual Processing, and Digital Display, vol. 1077, pp. 178-187, 1989.
[29] “Information technology: Coding of audio-visual objects, Part 5: Reference software Amendment 6: Advanced video coding and high efficiency advanced audio coding reference software,” ISO/IEC JTC 1/SC 29/WG 11 Docs. No. 6248.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔