跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉柏伸
研究生(外文):Bo-Shen Liou
論文名稱:具有效率之服務品質計價架構與故障復原方案
論文名稱(外文):Efficient QoS Pricing Architecture and Fault Recovery Mechanisms
指導教授:黃肇雄黃肇雄引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:74
中文關鍵詞:計價負載平衡優先佇列故障復原服務品質
外文關鍵詞:PricingLoad BalancingPriority QueueingFault RecoveryQuality of Service
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著網路爆炸成長與家庭寬頻時代的來臨,各式數位應用 (例如視訊電話、互動式遠距教學、隨選影片等)愈趨多樣化。越來越多的使用者在使用這些服務時,希望能得到某些程度以上的品質保證。我們以ISP營運者的角度,設計一套能依據使用者要求服務品質來合理收費的運作架構,加上依據連結負載的計價函式,使得網路資源的分配可以公平且有效率。網路資源會隨著網路交通變異與網路拓樸改變而有所變化,因而需要故障復原機制。我們也設計了適合各個優先權的復原機制,讓網路的故障復原更有效率,更進一步發展可尋找端點對端點復原路徑與局部復原路徑的演算法。
一個支援多樣服務的網路可以用優先排程的方式達成。本篇論文焦點放在head-of-line的優先排程系統,並導出兼具簡易與正確的平均等待時間之近似值在每個優先權等待佇列中。路徑建立模組與路徑復原模組兩者都需要此平均等待時間作為在路徑抉擇時的平均延遲參數。
The exponential growth of the Internet and broadband home network has led to various digital applications, such as videophone, interactive distance learning, and video-on-demand, etc. More and more users require quality-of-service provisioning for multiple differentiated levels of services. In this dissertation, we design a QoS-oriented pricing architecture with multiple delay levels and bandwidth supports. Our pricing strategy adopts load-based cost function mechanism to make the resource distribution more efficiently. Network resources also vary due to traffic fluctuation or topology changes. We propose a priority-based fault recovery scheme to differentiate fault recovery behaviors, and develop algorithms for finding an end-to-end QoS recovery path and local QoS recovery path segments since each protection level adopts either of them.
A multi-service network can be achieved by priority scheduling. This dissertation focuses on the head-of-line priority queueing system and provides a simple and accurate approximation of mean waiting time for each priority queue. Both route setup module and route recovery module require the mean waiting time approximation as the average delay in route decision.
中文摘要 iii
Abstract iv
Table of Contents v
List of Figures vii
List of Tables ix

Chapter 1. Introduction 1
1.1 Motivations and Goals 1
1.2 QoS Pricing Architecture 2
Chapter 2. Related Work 4
2.1 Quality-of-Service (QoS) and Differentiated Services (DiffServ) 4
2.2 QoS Pricing 5
2.3 QoS routing 7
2.4 Internet Traffic Engineering 11
Chapter 3. Mean Packet Delay Approximation in the GI/G/1 Queueing System with Priority Scheduling 13
3.1 Introduction 13
3.2 Mean waiting time of a GI/G/1 queueing system 14
3.3 Amendment term to the mean waiting time approximation 18
3.4 Approximation of a GI/G/1 priority queueing system 22
3.5 Simulation and results 23
3.6 Features of our approximation 29
Chapter 4. QoS Pricing Architecture 30
4.1 QoS Pricing Motivations and Issues 30
4.2 QoS Pricing Architecture 31
4.3 QoS Pricing Module 32
4.4 Admission Control and QoS Routing 38
4.5 Simulation Results 40
4.6 QoS Pricing Architecture Features 47
Chapter 5. Efficient End-to-End Repair and Local Repair Mechanisms for QoS Fault Recovery 49
5.1 Introduction to QoS Fault Recovery 49
5.2 Fault recovery models 50
5.3 Protection levels and mechanisms 53
5.4 End-to-end QoS fault recovery path 54
5.5 Local QoS fault recovery path 62
5.6. QoS Fault Recovery Conclusion and future work 64
Chapter 6. Conclusion and Future Work 66
Reference 68
Publication List 73
[1]J. K. MacKie-Mason, H. R. Varian, “Pricing congestible network resources”, IEEE Journal on Selected Areas in Communications, vol. 13, pp. 1141-1149, 1995.
[2]A. Ganesh, K. Laevens and R. Steinberg, “Congestion pricing and user adaptation”, Proceedings of IEEE INFOCOM, Anchorage, AK, pp. 956–965, Apr., 2001.
[3]N. Semret, R. F. Liao, A. T. Campbell, and A. A. Lazar, “Pricing, provisioning and peering: dynamic markets for differentiated Internet services and implications for network interconnections,” IEEE Journal on Selected Areas in Communications 18 (12), pp. 2499-2513.
[4]X. Wang and H. Schulzrinne, “Pricing network resources for adaptive applications in a differentiated services network,” in Proc. of IEEE INFOCOM 2001.
[5]R. Braden, et al., “Integrated Services in the Internet architecture: an overview”, RFC 1633, IETF 1994.
[6]R. Braden, et al., “Resource ReSerVation Protocol (RSVP), RFC 2205, IETF 1997.
[7]S. Blake, et al., “An Architecture for Differentiated Services”, RFC 2475, 1998.
[8]R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of congestion control,” Automatica, vol. 35, no. 12, pp. 1969–1985, 1999.
[9]I. Ch. Paschalidis and J. N. Tsitsiklis, “Congestion-dependent pricing of network services,” IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 171–184, 2000.
[10]A. Odlyzko, “Paris Metro Pricing for the Internet”, ACM Conference on Electronic Commerce, pp. 140-147, Nov. 1999.
[11]R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, “Pricing in computer networks: motivation, formulation, example,” IEEE/ACM Transactions on Networking, vol. 1, no. 6, pp. 614-627, 1993.
[12]A. Gupta, D. O. Stahl, A. B. Whinston, “Priority pricing of integrated services networks,” in: L.W. McKnight, J.P. Bailey (Eds.), Internet Economics, MIT Press, Cambridge, pp. 323–352, 1997.
[13]E. W. Fulp and D. S. Reeves, “Bandwidth provisioning and pricing for networks with multiple classes of service,” Computer Networks, vol. 46, pp. 41-52, 2004.
[14]N. J. Keon and G. Anandalingam, “Optimal pricing for multiple services in telecommunications networks offering Quality-of-Service guarantees”, IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 66-80, Feb. 2003.
[15]P. Marbach, “Priority service and max-min fairness,” in Proc. of IEEE INFOCOM 2002.
[16]T. Li, Y. Iraqi, and R. Boutaba, “Pricing and admission control for QoS-enabled Internet,” Computer Networks, vol. 46, pp. 87-110, 2004.
[17]J. Hou, J. Yang, and S. Papavassiliou, “Integration of pricing with call admission control to meet QoS requirements in cellular networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 9, pp. 898-910, 2002.
[18]Z. Wang and J. Crowcroft, “Quality-of-Service routing for supporting multimedia applications,” IEEE Journal on Selected Areas in Communications, vol. 14, 7, pp. 1228 –1234, Sept. 1996.
[19]J. M. Jaffe, “Algorithms for finding paths with multiple constraints,” Networks, vol. 14, pp. 95-116, 1984.
[20]A. Iwata et al., “ATM routing algorithms with multiple QoS requirements for multimedia internetworking,” IEICE Transactions and Communication, vol. E79-B, no. 8, pp. 999-1006, 1996.
[21]S. Chen and K. Nahrstedt, “On finding multi-constrained paths,” in Proc. of ICC 1998.
[22]T. Korkmaz and M. Krunz, “A randomized algorithm for finding a path subject to multiple QoS requirements,” Computer Networks, vol. 36, pp. 251-268, 2001.
[23]H. De Neve and P. Van Mieghem, “TAMCRA: A tunable accuracy multiple constraints routing algorithm,” Computer Communications, vol. 23, pp. 667–679, 2000.
[24]P. Van Mieghem and F. A. Kuipers, “Concepts of Exact QoS Routing Algorithms,” IEEE/ACM Trans. Networking, vol. 12, no. 5, pp. 851–864, Oct. 2004.
[25]T. Korkmaz and M. Krunz, “Routing Multimedia Traffic with QoS Guarantees,” IEEE Transactions on Multimedia, vol. 5, no. 3, pp. 429–443, Sept. 2003.
[26]G. Liu and K. G. Ramakrisnan, “A*Prune: an algorithm for finding k-shortest path subject to multiple constraints,” in Proc. of IEEE INFOCOM 2001.
[27]F. Kuipers, T. Korkmaz, M. Krunz, and P. V. Mieghem, “Performance evaluation of constraint-based path selection algorithms,” IEEE Network, vol. 18, no. 5, pp. 16-23, 2004.
[28]Z. Wang, Internet QoS: Architectures and Mechanisms for Quality of Service, Morgan Kaufmann Publishers, 2001.
[29]Y. Jiang, C-K. Tham, and C-C. Ko, “An approximation for waiting time tail probabilities in multiclass systems,” IEEE Communications Letters, Vol. 5, No. 4, pp. 175-177, Apr. 2001.
[30]J. Walraevens, B. Steyaert, and H. Bruneel, “Performance analysis of a single-server ATM queue with a priority scheduling,” Computers and Operations Research, 30(12): pp. 1807-1829, 2003.
[31]C. K. Tham, Q. Yao, and Y. Jiang, “A multi-class probabilistic priority scheduling discipline for differentiated services networks,” Computer Communications 25(17): pp. 1487-1496, 2002.
[32]T. Takine, B. Sengupta, and T. Hasegawa, “An analysis of a discrete-time queue for broadband ISDN with priorities among traffic classes,” IEEE Transactions on Communications 42(2-4): pp. 1837-1845, 1994.
[33]J. F. C. Kingman, “On queues in heavy traffic,” J. Roy. Statist. Soc. Ser. B, 24, (1962), 383-392.
[34]Leonard Kleinrock, Queueing Systems, Volume II: Computer Applications, John Wiley, New York, 1976.
[35]P. J. Kuehn, “Approximate analysis of general queueing networks by decomposition,” IEEE Transactions on Communications, 27: pp. 113-126, 1979.
[36]D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE Communications Magazine, vol. 37, no. 12, pp. 42-27, 1999.
[37]V. Sharma, et al., “Framework for Multi-Protocol Label Switching (MPLS)-based Recovery,” RFC 3469, IETF 2003.
[38]R. Bartoˇs and M. Raman, “A heuristic approach to service restoration MPLS networks,” in Proc. of the 2001 IEEE International Conference on Communications (ICC), Helsinki, Finland, June 2001.
[39]Y. Bejerano, Y. Breitbart, A. Orda, R. Rastogi, and A. Sprintson, “Algorithms for computing QoS paths with restoration,” in Proc. of IEEE INFOCOM 2003.
[40]M. Kodialam and T. V. Lakshman, “Dynamic routing of locally restorable bandwidth guaranteed tunnels using aggregated link usage information,” in Proc. of IEEE INFOCOM 2001.
[41]M. Kodialam, T. V. Lakshman, and S. Sengupta, “A simple traffic independent scheme for enabling restoration oblivious routing of resilient connections,” in Proc. of IEEE INFOCOM 2004.
[42]D. Haskin and R. Krishnan, “A method for setting and alternative label switched paths to handle fast reroute,” IETF Internet Draft, [draft-haskin-mpls-fast-reroute-05.txt], Nov. 2000.
[43]K. Owens, V. Sharma, S. Makam, and C. Huang, “A path protection/restoration mechanism for MPLS networks,” IETF Internet Draft, [draft-chang-mpls-path-protection-03.txt], July 2001.
[44]M. Kodialam and T. V. Lakshman, “Dynamic routing of bandwidth guaranteed tunnels with restoration,” in Proc. of IEEE INFOCOM 2000.
[45]D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On finding disjoint paths in single and dual link cost networks,” in Proc. of IEEE INFOCOM 2004.
[46]T. M. Chen and T. H. Oh, “Reliable services in MPLS,” IEEE Communications Magazine, pp. 58-62, Dec. 1999.
[47]S. Yoon, H. Lee, D. Choi, Y. Kim, G. Lee, and M. Lee, “An efficient recovery mechanism for MPLS-based protection LSP,” in Joint 4th IEEE International Conference on ATM (ICATM 2001) and High Speed Intelligent Internet Symposium, pp. 75-79, 2001.
[48]G. Ahn, J. Jang, and W. Chun, “An efficient rerouting scheme for MPLS-based recovery and its performance evaluation,” Telecommunication Systems, vol. 19, no. 3, 2002.
[49]G. F. Italiana, R. Rastogi, and B. Yener, “Restoration algorithms for virtual bandwidth guaranteed tunnels with restoration,” in Proc. of IEEE INFOCOM 2002.
[50]K. P. Gummadi, M. J. Pradeep, and C. S. R. Murthy, “An efficient primary-segmented backup scheme for dependable real-time communication in multihop networks,” IEEE/ACM Transactions on Networking, 11 (1), pp. 81-94, Feb. 2003.
[51]A. Orda and A. Sprintson, “Efficient Algorithms for Computing Disjoint QoS Paths,” in Proc. of IEEE INFOCOM 2004.
[52]Y. Guo, F. A. Kuipers, and P. Van Mieghem, “A link-disjoint paths algorithm for reliable QoS routing,” International Journal of Communication Systems, 16 (9), pp. 779-798, Nov. 2003.
[53]F. L. Faucheur, et al., “Multi-Protocol Label Switching (MPLS) Support of Differentiated Services,” RFC 3270, IETF 2002.
[54]E. Calle, Jose L. Marzo, and Anna Urra, “Protection performance components in MPLS networks”, Computer Communications, vol. 27, pp. 1220-1228, 2004.
[55]A. Autenrieth, A. Kirstädter, “Engineering end-to-end IP resilience using Resilience-Differentiated QoS,” IEEE Communications Magazine, pp. 50-57, Jan. 2002.
[56]P. V. Mieghem, H. D. Neve, F. Kuipers, “Hop-by-hop quality of service routing,” Computer Networks, vol. 37, pp. 407-423, 2001.
[57]J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest pairs of disjoint paths,” Networks, 14, pp. 325-333, 1984.
[58]R. Bhandari, “Optimal diverse routing in telecommunication fiber networks,” in Proc. of IEEE INFOCOM 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top