跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡義興
研究生(外文):Yi-hsing Chien
論文名稱:可變動高速奇偶校驗編碼之解碼器結構設計
論文名稱(外文):Scalable High HUE LDPC Decoder Architecture Design
指導教授:顧孟愷
指導教授(外文):Mong-kai Ku
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:47
中文關鍵詞:錯誤更正碼低密度奇偶校驗編碼遞迴解碼編碼增益
外文關鍵詞:Low-density Parity CheckLDPCIterative DecodingChannel CodingSum-product AlgorithmSPAMin-sum algorithmMSAScaling min-sum algorithmSMSACoding Gain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Low-density parity check (LDPC) codes have been shown that it is a strong competitor of Turbo codes. LDPC codes offer excellent coding gain and provide elegant low computation complexity when comparing with Turbo codes. The complex routing nature of LDPC decoder and low hardware utilization efficiency are the major implementation challenges.
In this thesis we design an elitist scheduling algorithm called “Jump-Reset Scheduling Algorithm” to boost hardware utilization efficiency (HUE) of low-density parity check (LDPC) decoder. This algorithm supports a scalable pipeline decoding architecture. The architecture is a semi-parallel decoder with a scalability factor. It offers flexible tradeoff between hardware cost and throughput. A high HUE and scalable decoding architecture is implemented. This architecture is decoding algorithm independent from decoding algorithm. Sum-product algorithm and min-sum algorithm can be applied to this architecture. We use a modified min-sum algorithm as decoding algorithm in this decoder. This algorithm only contains additions and comparisons. There are no large LUTs for non-linear function in bit-to-check functional units. The modified min-sum algorithm can improve BER performance extremely close to sum-product algorithm. Word length effect on BER performance is analyzed. This thesis presents a scalable pipelined architecture with single size of memory and extremely high hardware utilization efficiency. This architecture can offer double throughput of traditional architecture without increasing memory requirement.
1. CHAPTER 1 — INTRODUCTION 1
1.1. COMMUNICATION SYSTEM 1
1.2. HISTORY AND INDUSTRY STANDARD 2
1.3. CODE AND HARDWARE CO-DESIGN 2
1.4. SCALABLE ARCHITECTURE 3
1.5. HUE 3
1.6. ORGANIZATION OF THESIS 4
2. CHAPTER 2 — DECODING ALGORITHM AND PERFORMANCE 5
2.1. RELATED WORK 5
2.2. TANNER GRAPH AND PARITY CHECK MATRIX 6
2.3. ITERATIVE DECODING & MESSAGE PASSING ALGORITHM 8
2.3.1. Sum-Product Algorithm 8
2.3.2. Min-Sum Algorithm 9
2.3.3. Scaling Min-sum algorithm 10
2.4. LOGARITHM DOMAIN ALGORITHM 11
2.5. CODE LENGTH, CODE RATE AND ITERATION VERSUS BER PERFORMANCE 13
2.5.1. Code Length 13
2.5.2. Code Rate 13
2.5.3. Decoding Iterations 14
2.6. FINITE WORD LENGTH 16
2.6.1. Quantization 16
2.6.2. Non-linear Quantization 16
2.6.3. SPA Finite Word Length Simulation 17
2.6.4. Log-domain SPA Finite Word Length Simulation 18
2.6.5. Scaling MSA Finite Word Length Simulation 19
2.7. HARDWARE AWARE QC-LDPC CODE DESIGN 19
2.7.1. QC-LDPC Codes and Parity Check Matrix 19
3. CHAPTER 3 — SCHEDULING ALGORITHM 21
3.1. PROCESSING UNIT 21
3.2. TRADITIONAL DECODING SEQUENCE 21
3.3. CONSTRAINT FOR SCHEDULING ALGORITHM 21
3.4. MESSAGE STORAGE 22
3.5. JUMP-RESET SCHEDULING ALGORITHM 23
3.5.1. Core Algorithm 23
3.5.2. Algorithm Principle 25
3.5.3. Algorithm Advantages 26
3.5.3.1. High HUE 26
3.5.3.2. Thread Set and Scalability 26
3.5.3.3. Simple Addressing 26
3.5.3.4. Memory and Computation Efficient 27
3.6. ADAPTIVE SYNDROME TEST 27
4. CHAPTER 4 — ARCHITECTURE DESIGN 28
4.1. DECODING ARCHITECTURE 28
4.1.1. FSM for Scheduling Algorithm 28
4.1.2. Functional Units 29
4.1.2.1. Check Functional Unit 29
4.1.2.2. Check Functional Unit Optimization 30
4.1.2.3. Bit Functional Unit 31
4.1.2.4. Bit Functional Unit Optimization 32
4.2. EFFICIENT ARCHITECTURE 33
4.3. MULTITHREAD ARCHITECTURE 34
5. CHAPTER 5 — EXPERIMENTAL RESULT 35
5.1. RESULT 35
5.2. CONCLUSION AND FUTURE WORK 35
6. APPENDIX 36
6.1. DESIGN HIERARCHY AND GENERICS 36
6.1.1. Simulation Waveform of Control Unit for Jump-Reset Algorithm 37
6.2. ITERATION ANALYSIS 43
6.2.1. Sun-Product Algorithm 43
6.2.2. Min-Sum Algorithm 43
6.2.3. Scaling Min-Sum Algorithm 44
6.2.4. Average Iterations 44
6.2.5. Iteration Statistics 45
7. REFERENCE 46
[1]David J.C MacKay, ”Near Shannon Limit Performance of Low Density Parity Check Codes,” Electronics Letters, vol. 33, pp. 457-458, 13 March 1997
[2]Blanksby, A.J.; Howland, C.J “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder”, IEEE Journal, Solid-State Circuits, vol. 37, pp.404-412, March 2002
[3]Howland, C.; Blanksby, A “Parallel decoding architectures for low density parity check codes”, ISCAS, Circuits and Systems, vol. 4, pp.742-745, May 2001
[4]Mauro Cocco, John Dielissen, Marc Heijligers, Andries Hekstra, and Jos Huisken, “A Scalable Architecture for LDPC Decoding,”Design, Automation and Test in Europe Conference and Exhibition, vol.3, pp.88-93, Feb 2004
[5]Xiao-Yu Hu, Evangelos Eleftheriou, Dieter-Michael Arnold, and Aholakia, “Efficient Implementation of the Sum-Product Algorithm for Decoding LDPC Codes”, 2001
[6]Engling Yeo, Boriveje Nikolic, and Venkat Anatharam, “Architectures and Implementations of Low-Density Parity Check Decoding Algorithms”, 2002
[7]Jinghu Chen, Marc P.C Fossorier, “Near Optimum Universal Belief Propagation Base Decoding of Low-Density Parity check Codes”, 2002
[8]Decoder Architecture for Array-Code-Based LDPC Codes
[9]Tong Zhang, and Keshab K. Parhi, “Joint (3, k)-Regular LDPC Code and Decoder/Encoder Design”, 2004
[10]Marjan Karkooti and Joseph R. Cavallaro, “Semi-Parallel Reconfigurable Architectures for Real-Time LDPC Decoding,” ITCC Proceeding of International Conference, Information Technology: Coding and Computing, vol.1, pp.579-585, April 2004
[11]R. G. Gallager, “Low-Density Parity-Check Codes”, IEEE Trans., Information Theory, vol. 8, pp.21-28, Jan. 1962
[12]Mohammad M. Mansour and Naresh R. Shanbhag, “Memory-Efficient Turbo Decoder Architecture for LDPC Codes”, 2002
[13]Mauro Cocco, John Dielissen, Marc Heijligers, Andries Hekstra, and Jos Huisken, “A Scalable Architecture for LDPC Decoding,”Design, Automation and Test in Europe Conference and Exhibition, vol.3, pp.88-93, Feb 2004
[14]Niclas Wiberg, “Codes and Decoding on General Graphs”, PhD thesis, Linkoping University, 1996
[15]Yanni Chen and Keshab K. Parhi, “Overlapped Message Passing for Quasi-Cyclic Low-Density Parity Check Codes”, IEEE Trans., Circuits and Systems, vol. 51, pp.1106-1113, June 2004
[16]Sang-Min Kim and Parhi, K.K. “Overlapped decoding for a class of quasi-cyclic LDPC codes”, IEEE Workshop, Signal Processing Systems, pp.113-117,13-15 Oct 2004
[17]Jun Heo “Analysis of scaling soft information on low density parity check code”, Electronics Letters, vol 39, pp219-221, Jan 2003
[18]Jun Heo and Keith M. Chugg, “Optimization of Scaling Soft Information in Iterative Decoding Via Density Evolution Methods”, IEEE Trans., Communications, vol. 53, pp957-961, June 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鄧天德(2000)。九年一貫課程與鄉土教育。課程與教學,3:3,17-30。
2. 黃富順(1997)。增進成人學習者的學習動機。成人教育雙月刊,34,2-8。
3. 黃德祥(1997)。青少年休閒輔導--策略與措施。測驗與輔導,137 民85.08,2837-2840。
4. 王鑫(1998)。戶外教學概論。北縣國教輔導,7,7-12。
5. 林明地(1999)。家長參與學校教育的研究與實際:對教育改革的啟示。教育研究資訊,7(2),61-79。
6. 鄧天德(1997)。鄉土教學活動單設計概說。國教月刊第44卷,第3、4期,49-54。
7. 郭麗玲(2000)。自我導向學習理論與模式。社會教育學刊,29,1-34。
8. 趙寶琴(2001)。親職教育問題面面觀。北縣教育,38,50-55。
9. 王鑫(1989)。環境教育及戶外教育活動設計舉例。環境教育季刊,2期,63-68。
10. 胡金印(1985)。鄉土地理野外實察教學法簡介,地理教育,第十一期,59-64。
11. 林進材(1998)。學習自主權—自我導向學習理論在教學上的意義。國教之友,50(2),13-20。
12. 何華國(1996)。資深啟智教育教師生涯發展面面觀。教師之友,37:5 民85.12,39-42。
13. 李慶泰(1999)。給他們機會他們會做得更好---推行學校義工制度效能篇。教師之友,40-5,57-62。
14. 李崑山(2000)。戶外教學策劃與設計。北縣教育,32,47-52。
15. 蔡明昌(2001)。中學教師自我導向學習準備度與其在職進修學習成效關係之研究。教育研究資訊,9(4),1-26。