跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連聖貴
研究生(外文):Sheng-Kuei Lien
論文名稱:部分人類基因組的調控組系統樹:植基於序列上游調控區演算選設的同側元件組合選群
論文名稱(外文):Regulomics Tree with Putative Cis-elements Clusters upon Upstream Control Regions of Human Genome Subset
指導教授:高成炎高成炎引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:54
中文關鍵詞:同側因子對側因子序列上游調控區基因調控組系統樹
外文關鍵詞:Cis-regulatory elementTranscriptional FactorUpper Stream Control RegionRegulomics Tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因表現調控演算是個高度挑戰性的研究問題,同側因子(Cis-elements)調控序列演算分析逐漸展現建構基因組整體表現調控網絡的重要性。本論文提出演算選設與組合選群方法,建構序列上游調控區同側元件組合的基因調控組樹。首先探索產生對側因子(Trans-factors)直接結合核苷酸序列的常規表示(regular expression)模式演算選設同側因子(Cis-elements)樣本。憑藉生物實驗確認的同側調控序列 (Motifs)完整集合群公知序列資料庫EPD[15]及TRANSFAC[21]挑選資料,作為最佳化收斂同側因子調控序列的自然演化選用機制本質依歸。
基因調控組樹建構採用演算選設同側因子調控元件群執行標註索引序列上游調控區方法,階層式資料分群演算輸出基因調控組的系統樹圖型。基因調控組樹(RegTree)反映基因間調控模式的相似程度,是穩定性基因轉錄表現相對關係,可能是動態性演算模擬調控網絡(RegNet)的可行參考基礎。基因調控組樹可以協尋基因微陣相近表現型式基因歸群的對側調控因子,依據調控組樹歸群的群內與群間同側因子的異同,蒐尋可能的同側因子進行生物實驗確認對側轉錄因子。穩定性基因調控組樹或能未來應用協助演算模擬動態性基因轉錄表現調控網絡的完整過程。
The regulation of gene expression is a challenging problem. In the post-genomic era, the analysis of cis-regulation is growing importance. We propose a construct methodology as of the regulomics tree (RegTree) by using a putative set of simplistic cis-elements and algorithms with regulation expression. The cis-elements are created by mining the gapped patterns of direct contacting nucleotides within a selected data set from the public database, EPD[15] and TRANSFAC[21].
The putative set of simplistic cis-elements has been used to construct the regulomics tree by indexing cis-elements in the upper stream control region of gene sequences and data clustering method. By using the hierarchical clustering algorithm, the output is a dendrogram that is desired in the regulomics tree. The regulomics tree reflects the similarity of regulation patterns among genes and is the reference model of dynamic simulation for RegNet. It can do help for microarray experiment to find the transcription factors. The application of regulomics tree is able to deduce that the overall program of the evolution from fertilized egg to individual body in the future.
Chapter 1. Introduction 1
1.1. Regulomics 1
1.2. Cis-Regulatory Element 2
1.3. Regulomics Tree 4
1.4. System and Method 5
1.5. Thesis Organization 7
Chapter 2. Cis-mono And Cis-duo Elements 8
2.1. Introduction 8
2.2. Cis-mono Element 9
2.2.1. Definition 9
2.2.2. Method 9
2.2.3. Result 12
2.3. Cis-duo-homo Element 13
2.3.1. Definition 13
2.3.2. Method 14
2.3.3. Operation of CEA 18
2.3.4. Result 19
2.4. Cis-duo-hetero Element 22
2.4.2. Cis-duo-hetero Identification 23
2.4.3. Result 24
Chapter 3. Cis-contig Element 25
3.1. Introduction 25
3.2. Method 25
3.2.1. Process of cis-contig Element Creation 25
3.3. Result 27
3.3.1. TF binding motif 27
3.3.2. SV40 27
Chapter 4. Regulomics Tree Construction 30
4.1. Introduction 30
4.2. Method and Algorithms 31
4.2.1. Sequence Transformation 31
4.2.2. Method of Data Clustering 32
4.3. Result 37
4.3.1. Human UCR Sample 37
4.3.2. Microarry Experiment Case Study 39
Chapter 5. Conclusion And Future Work 43
5.1. Conclusion 43
5.2. Future Work 43
References 44
Appendix A. NEXUS Format 47
A.1. Overview 47
A.2. NEXUS Format Specification 47
Token 49
5.2.1. TAXA block 50
5.2.2. TREES block 50
5.2.3. Tree-specification 52
[1]Bailey, T.L. and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proc. Int. Conf. Intell. Syst. Mol. Bio., AAAI Press, Menlo Park, CA, pp.28-36.
[2]Bussemaker,H.J., Li,H. and Siggia,E.D. (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167–171.
[3]Fessele, S., Maier,H., Zischek,C., Nelson,P.J. and Werner,T. (2002) Regulatory context is a crucial part of gene function. Trends Genet., 18, 60–63.
[4]Goro Terai and Toshihisa Takagi (2004). Predicting rules on organization of cis-regulatory elements, taking the order of elements into account. Bioinformatics 20: 1119-1128.
[5]Grabe, N. 2002. AliBaba2: context specific identification of transcription factor binding sites. In Silico Biology 2(1): S1-15.
[6]J.T.Horng, Tia-Hwang Lin, and Feng-Mao Lin (2003). "Database of repetitive elements in complete genomes and data mining using transcription factor binding sites", IEEE Trans Inf Technol Biomed, 7(2), 93-100.
[7]J.T. Horng, H.D. Huang, F.M. Lin, and L.C. Wu (2002). ”The Repetitive Sequence Database and Mining Putative Regulatory Elements in Gene Promoter Regions”, Journal of Computational Biology, Vol. 9, Issue 4, pp. 621-640.
[8]J.T. Horng and H.D. Huang (2002). “Mining putative Regulatory Elements in promoter Regions of Saccharomyces cerevisiae“, In Silicon Biology, 2, pp. 0-11.
[9]Kel, A., Kel-Margoulis,O., Babenko,V. and Wingender,E. (1999) Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. J. Mol. Biol., 288,353–376.
[10]Kielbasa SM, Korbel JO, Beule D, Schuchhardt J, Herzel H. (2001). Combining frequency and positional information to predict transcription factor binding sites. Bioinformatics 17(11): 1019-26.
[11]Klingenhoff, A., Frech,K., Quandt,K. and Werner,T. (1999) Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity. Bioinformatics, 15, 180–186.
[12]Maddison, David. R., Swofford, David. L. and Maddison, Wayne. P. (1997) NEXUS: an extensible file format for systemaric information. Systematic Biology, 46(4), 590–621.
[13]Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358.
[14]Pilpel, Y., Sudarsanam,P. and Church,G.M. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet., 29, 153–159.
[15]Praz V., Perier, RC., Bonnard, C., Bucher, P. (2002) The Eukaryotic Promoter Database, EPD: new entry types and links to gene expression data. Nucleic Acids Res.30, 322-324. http://www.epd.isb-sib.ch/
[16]Roth, F.R., Hughes, J.D., Estep, P.E. and Church, G.M. (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantization. Nature Biotechnol., 16, 939-945.
[17]R. Sharan, A. Ben-Hur, G.G. Loots, and I. Ovcharenko, (2004) CREME: Cis-Regulatory Module Explorer for the human genome, Nucleic Acids Research, 32, W253-6.
[18]Sharan,R., Ovcharenko,I., Ben-Hur,A. and Karp,R. (2003) CREME: a framework for identifying cis-regulatory modules in human–mouse conserved segments. Bioinformatics, 19(Suppl. 1), I283–I291.
[19]Sinha S and Tompa M. (2000). A statistical method for finding transcription factor binding sites. Proc Int Conf Intell Syst Mol Biol. Vol. 8: 344-354.
[20]van Helden J, Andre B, Collado-Vides J. (1998). Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol. ,281(5): 827-42.
[21]Wingender, E., X. Chen, et al. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Research 29(1): 281-3.
http://www.gene-regulation.com/pub/databases.html#transfac
[22]Zhu, J. and M. Q. Zhang. (1999). SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15(7-8): 607-11.
[23]Zhu, Z., Y. Pilpel, et al. (2002). Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. Journal of Molecular Biology 318(1): 71-81.
[24]HU1823, Ovarian cancer in NHRI Microarray Database, NHRI, Taiwan.
http://insilico.csie.org:9999/NMD/
[25]Yeast gene expression, Stanford Microarray Database, Departments of Biochemistry and Genetics at the School of Medicine, Stanford University, USA. http://genome-www5.stanford.edu/.
[26]STEPHEN W. HARTZELL, BARRY J. BYRNE, AND KIRANUR N. SUBRAMANIAN (1984). The simian virus 40 minimal origin and the 72-base-pair repeat are required simultaneously for efficient induction of late gene expression with large tumor antigen. Biochemistry Vol. 81, pp. 6335-6339.
[27]NCBI Human Genome Resources. http://www.ncbi.nlm.nih.gov/genome/guide/human/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top