|
[1]Bailey, T.L. and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In Proc. Int. Conf. Intell. Syst. Mol. Bio., AAAI Press, Menlo Park, CA, pp.28-36. [2]Bussemaker,H.J., Li,H. and Siggia,E.D. (2001) Regulatory element detection using correlation with expression. Nat. Genet., 27, 167–171. [3]Fessele, S., Maier,H., Zischek,C., Nelson,P.J. and Werner,T. (2002) Regulatory context is a crucial part of gene function. Trends Genet., 18, 60–63. [4]Goro Terai and Toshihisa Takagi (2004). Predicting rules on organization of cis-regulatory elements, taking the order of elements into account. Bioinformatics 20: 1119-1128. [5]Grabe, N. 2002. AliBaba2: context specific identification of transcription factor binding sites. In Silico Biology 2(1): S1-15. [6]J.T.Horng, Tia-Hwang Lin, and Feng-Mao Lin (2003). "Database of repetitive elements in complete genomes and data mining using transcription factor binding sites", IEEE Trans Inf Technol Biomed, 7(2), 93-100. [7]J.T. Horng, H.D. Huang, F.M. Lin, and L.C. Wu (2002). ”The Repetitive Sequence Database and Mining Putative Regulatory Elements in Gene Promoter Regions”, Journal of Computational Biology, Vol. 9, Issue 4, pp. 621-640. [8]J.T. Horng and H.D. Huang (2002). “Mining putative Regulatory Elements in promoter Regions of Saccharomyces cerevisiae“, In Silicon Biology, 2, pp. 0-11. [9]Kel, A., Kel-Margoulis,O., Babenko,V. and Wingender,E. (1999) Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. J. Mol. Biol., 288,353–376. [10]Kielbasa SM, Korbel JO, Beule D, Schuchhardt J, Herzel H. (2001). Combining frequency and positional information to predict transcription factor binding sites. Bioinformatics 17(11): 1019-26. [11]Klingenhoff, A., Frech,K., Quandt,K. and Werner,T. (1999) Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity. Bioinformatics, 15, 180–186. [12]Maddison, David. R., Swofford, David. L. and Maddison, Wayne. P. (1997) NEXUS: an extensible file format for systemaric information. Systematic Biology, 46(4), 590–621. [13]Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357-358. [14]Pilpel, Y., Sudarsanam,P. and Church,G.M. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat. Genet., 29, 153–159. [15]Praz V., Perier, RC., Bonnard, C., Bucher, P. (2002) The Eukaryotic Promoter Database, EPD: new entry types and links to gene expression data. Nucleic Acids Res.30, 322-324. http://www.epd.isb-sib.ch/ [16]Roth, F.R., Hughes, J.D., Estep, P.E. and Church, G.M. (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantization. Nature Biotechnol., 16, 939-945. [17]R. Sharan, A. Ben-Hur, G.G. Loots, and I. Ovcharenko, (2004) CREME: Cis-Regulatory Module Explorer for the human genome, Nucleic Acids Research, 32, W253-6. [18]Sharan,R., Ovcharenko,I., Ben-Hur,A. and Karp,R. (2003) CREME: a framework for identifying cis-regulatory modules in human–mouse conserved segments. Bioinformatics, 19(Suppl. 1), I283–I291. [19]Sinha S and Tompa M. (2000). A statistical method for finding transcription factor binding sites. Proc Int Conf Intell Syst Mol Biol. Vol. 8: 344-354. [20]van Helden J, Andre B, Collado-Vides J. (1998). Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol. ,281(5): 827-42. [21]Wingender, E., X. Chen, et al. (2001). The TRANSFAC system on gene expression regulation. Nucleic Acids Research 29(1): 281-3. http://www.gene-regulation.com/pub/databases.html#transfac [22]Zhu, J. and M. Q. Zhang. (1999). SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15(7-8): 607-11. [23]Zhu, Z., Y. Pilpel, et al. (2002). Computational identification of transcription factor binding sites via a transcription-factor-centric clustering (TFCC) algorithm. Journal of Molecular Biology 318(1): 71-81. [24]HU1823, Ovarian cancer in NHRI Microarray Database, NHRI, Taiwan. http://insilico.csie.org:9999/NMD/ [25]Yeast gene expression, Stanford Microarray Database, Departments of Biochemistry and Genetics at the School of Medicine, Stanford University, USA. http://genome-www5.stanford.edu/. [26]STEPHEN W. HARTZELL, BARRY J. BYRNE, AND KIRANUR N. SUBRAMANIAN (1984). The simian virus 40 minimal origin and the 72-base-pair repeat are required simultaneously for efficient induction of late gene expression with large tumor antigen. Biochemistry Vol. 81, pp. 6335-6339. [27]NCBI Human Genome Resources. http://www.ncbi.nlm.nih.gov/genome/guide/human/
|